File size: 10,714 Bytes
67b1c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from loguru import logger

class FeatureAnalyzer:
    def __init__(self,df,output_path):
        self.df=df
        self.output_path=output_path
    

    def plot_correlation_heatmap(self):
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        numeric_cols = self.df.select_dtypes(include=[np.number]).columns.drop('fake')
        correlation_matrix = self.df[numeric_cols].corr()
        plt.figure(figsize=(14, 12))
        sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', vmin=-1, vmax=1, center=0)
        plt.title('Correlation Heatmap of Numeric Features', fontsize=16)
        plt.tight_layout()
        output_file = Path(self.output_path) / 'correlation_heatmap.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved correlation heatmap to {output_file}")

    def plot_mean_by_fake_bar(self):
        key_features = [
            'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
            'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
            'time_since_last_review_user', 'user_account_age', 'pronoun_density',
            'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
            'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
        ]
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        mean_by_fake = self.df.groupby('fake')[key_features].mean().T
        mean_by_fake.columns = ['Genuine (0)', 'Fake (1)']
        plt.figure(figsize=(12, 8))
        mean_by_fake.plot(kind='bar', color=['skyblue', 'salmon'], width=0.8)
        plt.title('Mean Feature Values by Fake Label', fontsize=16)
        plt.xlabel('Features', fontsize=12)
        plt.ylabel('Mean Value', fontsize=12)
        plt.xticks(rotation=45, ha='right')
        plt.legend(title='Fake Label')
        plt.tight_layout()
        output_file = Path(self.output_path) / 'mean_by_fake_bar.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved mean by fake bar plot to {output_file}")

    def plot_violin_plots(self):
        key_features = [
            'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
            'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
            'time_since_last_review_user', 'user_account_age', 'pronoun_density',
            'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
            'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
        ]
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        plt.figure(figsize=(14, 10))
        for i, feature in enumerate(key_features[:6], 1):
            plt.subplot(2, 3, i)
            sns.violinplot(x='fake', y=feature, data=self.df, palette=['skyblue', 'salmon'])
            plt.title(f'{feature} Distribution', fontsize=12)
            plt.xlabel('Fake (0/1)', fontsize=10)
        plt.tight_layout()
        output_file = Path(self.output_path) / 'violin_plots.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved violin plots to {output_file}")

    def plot_box_plots(self):
        key_features = [
            'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
            'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
            'time_since_last_review_user', 'user_account_age', 'pronoun_density',
            'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
            'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
        ]
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        plt.figure(figsize=(14, 10))
        for i, feature in enumerate(key_features[6:11], 1):
            plt.subplot(2, 3, i)
            sns.boxplot(x='fake', y=feature, data=self.df, palette=['skyblue', 'salmon'])
            plt.title(f'{feature} Distribution', fontsize=12)
            plt.xlabel('Fake (0/1)', fontsize=10)
        plt.tight_layout()
        output_file = Path(self.output_path) / 'box_plots.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved box plots to {output_file}")

    def plot_scatter_review_grammar(self):
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        plt.figure(figsize=(10, 6))
        sns.scatterplot(x='review_stars', y='grammar_error_score', hue='fake', data=self.df, palette=['blue', 'red'], alpha=0.5)
        plt.title('Review Stars vs Grammar Error Score by Fake Label', fontsize=16)
        plt.xlabel('Review Stars', fontsize=12)
        plt.ylabel('Grammar Error Score', fontsize=12)
        plt.legend(title='Fake')
        plt.tight_layout()
        output_file = Path(self.output_path) / 'scatter_review_grammar.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved scatter plot to {output_file}")

    def plot_density_plots(self):
        key_features = [
            'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
            'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
            'time_since_last_review_user', 'user_account_age', 'pronoun_density',
            'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
            'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
        ]
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        plt.figure(figsize=(14, 10))
        for i, feature in enumerate(key_features[:4], 1):
            plt.subplot(2, 2, i)
            for label in [0, 1]:
                subset = self.df[self.df['fake'] == label]
                sns.kdeplot(subset[feature], label=f'Fake={label}', fill=True, alpha=0.5)
            plt.title(f'{feature} Density', fontsize=12)
            plt.xlabel(feature, fontsize=10)
            plt.legend()
        plt.tight_layout()
        output_file = Path(self.output_path) / 'density_plots.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved density plots to {output_file}")

    def plot_stacked_bar_similarity(self):
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        bins = pd.cut(self.df['similarity_to_other_reviews'], bins=10)
        stacked_data = self.df.groupby([bins, 'fake']).size().unstack(fill_value=0)
        stacked_data = stacked_data.div(stacked_data.sum(axis=1), axis=0)
        plt.figure(figsize=(12, 8))
        stacked_data.plot(kind='bar', stacked=True, color=['skyblue', 'salmon'], width=0.8)
        plt.title('Proportion of Fake by Similarity to Other Reviews Bins', fontsize=16)
        plt.xlabel('Similarity Bins', fontsize=12)
        plt.ylabel('Proportion', fontsize=12)
        plt.legend(['Genuine (0)', 'Fake (1)'], title='Fake Label')
        plt.xticks(rotation=45, ha='right')
        plt.tight_layout()
        output_file = Path(self.output_path) / 'stacked_bar_similarity.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved stacked bar plot to {output_file}")

    def plot_pie_fake_distribution(self):
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        fake_counts = self.df['fake'].value_counts()
        plt.figure(figsize=(8, 8))
        plt.pie(fake_counts, labels=['Genuine (0)', 'Fake (1)'], colors=['skyblue', 'salmon'], autopct='%1.1f%%', startangle=90)
        plt.title('Distribution of Fake Labels', fontsize=16)
        plt.axis('equal')
        output_file = Path(self.output_path) / 'pie_fake_distribution.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved pie chart to {output_file}")

    def plot_count_code_switching(self):
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        plt.figure(figsize=(8, 6))
        sns.countplot(x='code_switching_flag', hue='fake', data=self.df, palette=['skyblue', 'salmon'])
        plt.title('Count of Fake by Code Switching Flag', fontsize=16)
        plt.xlabel('Code Switching Flag (0/1)', fontsize=12)
        plt.ylabel('Count', fontsize=12)
        plt.legend(title='Fake Label')
        plt.tight_layout()
        output_file = Path(self.output_path) / 'count_code_switching.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved count plot to {output_file}")

    def plot_variance_by_fake_bar(self):
        key_features = [
            'review_stars', 'business_stars', 'business_review_count', 'user_review_count',
            'friends', 'fans', 'average_stars', 'tip_compliment_count', 'tip_count',
            'time_since_last_review_user', 'user_account_age', 'pronoun_density',
            'grammar_error_score', 'repetitive_words_count', 'similarity_to_other_reviews',
            'review_useful_funny_cool', 'user_useful_funny_cool', 'sentiment_polarity'
        ]
        Path(self.output_path).mkdir(parents=True, exist_ok=True)
        variance_by_fake = self.df.groupby('fake')[key_features].var().T
        variance_by_fake.columns = ['Genuine (0)', 'Fake (1)']
        plt.figure(figsize=(12, 8))
        variance_by_fake.plot(kind='bar', color=['skyblue', 'salmon'], width=0.8)
        plt.title('Feature Variance by Fake Label', fontsize=16)
        plt.xlabel('Features', fontsize=12)
        plt.ylabel('Variance', fontsize=12)
        plt.xticks(rotation=45, ha='right')
        plt.legend(title='Fake Label')
        plt.tight_layout()
        output_file = Path(self.output_path) / 'variance_by_fake_bar.png'
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        logger.info(f"Saved variance bar plot to {output_file}")

    def run_pipeline(self):

        sns.set(style="whitegrid")
        plt.rcParams['figure.figsize'] = (12, 8)
        self.plot_correlation_heatmap()
        self.plot_mean_by_fake_bar()
        self.plot_violin_plots()
        self.plot_box_plots()
        self.plot_scatter_review_grammar()
        self.plot_density_plots()
        self.plot_stacked_bar_similarity()
        self.plot_pie_fake_distribution()
        self.plot_count_code_switching()
        self.plot_variance_by_fake_bar()