Spaces:
Sleeping
Sleeping
File size: 2,613 Bytes
7098f99 72dabfb 7098f99 72dabfb 7098f99 72dabfb 7098f99 72dabfb 7098f99 72dabfb 7098f99 72dabfb 7098f99 72dabfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
import os
from smolagents import InferenceClientModel, CodeAgent, MCPClient
# Configuration
MCP_SERVER_URL = "https://ashokdll-mcp-sentiment.hf.space/gradio_api/mcp/sse" # Replace with your actual URL
mcp_client = None
agent = None
def initialize_agent():
"""Initialize the MCP client and agent"""
global mcp_client, agent
try:
# Connect to your MCP Server
mcp_client = MCPClient({"url": MCP_SERVER_URL})
tools = mcp_client.get_tools()
# Debug: Print available tools
print("Available tools:")
for tool in tools:
print(f"- {tool.name}: {tool.description}")
# Create the model with HF token
model = InferenceClientModel(token=os.getenv("HF_TOKEN"))
# Create the agent with tools
agent = CodeAgent(tools=[*tools], model=model)
return True, "Agent initialized successfully"
except Exception as e:
print(f"Error initializing agent: {e}")
return False, str(e)
def chat_function(message, history):
"""Handle chat messages"""
global agent
# Initialize agent if not already done
if agent is None:
success, error_msg = initialize_agent()
if not success:
return f"β Error connecting to MCP server: {error_msg}\n\nPlease check:\n1. Your MCP server URL is correct\n2. Your sentiment analysis space is running\n3. MCP server is enabled in your sentiment analysis app"
try:
# Run the agent with the user's message
response = agent.run(message)
return str(response)
except Exception as e:
return f"β Error running agent: {str(e)}"
def cleanup():
"""Cleanup function to disconnect MCP client"""
global mcp_client
if mcp_client:
try:
mcp_client.disconnect()
except:
pass
# Create the Gradio interface
demo = gr.ChatInterface(
fn=chat_function,
type="messages",
examples=[
"Analyze the sentiment of: 'I absolutely love this new product!'",
"What's the sentiment of: 'This is terrible and I hate it'",
"Check sentiment: 'The weather is okay today'",
"Perform sentiment analysis on: 'Python programming is amazing!'"
],
title="π€ Sentiment Analysis Agent with MCP",
description="This agent connects to your sentiment analysis MCP server and can analyze text sentiment using natural language commands.",
)
# Launch the interface
if __name__ == "__main__":
try:
demo.launch()
finally:
cleanup() |