Spaces:
Running
on
L40S
Running
on
L40S
File size: 100,395 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 |
import numpy as np
import time
import torch
import torch.nn.functional as F
import torchvision.transforms as T
import io
import base64
import random
import math
import os
import re
import json
from PIL.PngImagePlugin import PngInfo
try:
import cv2
except:
print("OpenCV not installed")
pass
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps
from nodes import MAX_RESOLUTION, SaveImage
from comfy_extras.nodes_mask import ImageCompositeMasked
from comfy.cli_args import args
from comfy.utils import ProgressBar, common_upscale
import folder_paths
import model_management
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class ImagePass:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
"optional": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "passthrough"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Passes the image through without modifying it.
"""
def passthrough(self, image=None):
return image,
class ColorMatch:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_ref": ("IMAGE",),
"image_target": ("IMAGE",),
"method": (
[
'mkl',
'hm',
'reinhard',
'mvgd',
'hm-mvgd-hm',
'hm-mkl-hm',
], {
"default": 'mkl'
}),
},
"optional": {
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}
}
CATEGORY = "KJNodes/image"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "colormatch"
DESCRIPTION = """
color-matcher enables color transfer across images which comes in handy for automatic
color-grading of photographs, paintings and film sequences as well as light-field
and stopmotion corrections.
The methods behind the mappings are based on the approach from Reinhard et al.,
the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution
to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram
matching. As shown below our HM-MVGD-HM compound outperforms existing methods.
https://github.com/hahnec/color-matcher/
"""
def colormatch(self, image_ref, image_target, method, strength=1.0):
try:
from color_matcher import ColorMatcher
except:
raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher")
cm = ColorMatcher()
image_ref = image_ref.cpu()
image_target = image_target.cpu()
batch_size = image_target.size(0)
out = []
images_target = image_target.squeeze()
images_ref = image_ref.squeeze()
image_ref_np = images_ref.numpy()
images_target_np = images_target.numpy()
if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")
for i in range(batch_size):
image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
try:
image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
except BaseException as e:
print(f"Error occurred during transfer: {e}")
break
# Apply the strength multiplier
image_result = image_target_np + strength * (image_result - image_target_np)
out.append(torch.from_numpy(image_result))
out = torch.stack(out, dim=0).to(torch.float32)
out.clamp_(0, 1)
return (out,)
class SaveImageWithAlpha:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"mask": ("MASK", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images_alpha"
OUTPUT_NODE = True
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Saves an image and mask as .PNG with the mask as the alpha channel.
"""
def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None):
from PIL.PngImagePlugin import PngInfo
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
if mask.dtype == torch.float16:
mask = mask.to(torch.float32)
def file_counter():
max_counter = 0
# Loop through the existing files
for existing_file in os.listdir(full_output_folder):
# Check if the file matches the expected format
match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file)
if match:
# Extract the numeric portion of the filename
file_counter = int(match.group(1))
# Update the maximum counter value if necessary
if file_counter > max_counter:
max_counter = file_counter
return max_counter
for image, alpha in zip(images, mask):
i = 255. * image.cpu().numpy()
a = 255. * alpha.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
# Resize the mask to match the image size
a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS)
a_resized = np.clip(a_resized, 0, 255).astype(np.uint8)
img.putalpha(Image.fromarray(a_resized, mode='L'))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
# Increment the counter by 1 to get the next available value
counter = file_counter() + 1
file = f"{filename}_{counter:05}.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
return { "ui": { "images": results } }
class ImageConcanate:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"direction": (
[ 'right',
'down',
'left',
'up',
],
{
"default": 'right'
}),
"match_image_size": ("BOOLEAN", {"default": True}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "concanate"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Concatenates the image2 to image1 in the specified direction.
"""
def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None):
# Check if the batch sizes are different
batch_size1 = image1.shape[0]
batch_size2 = image2.shape[0]
if batch_size1 != batch_size2:
# Calculate the number of repetitions needed
max_batch_size = max(batch_size1, batch_size2)
repeats1 = max_batch_size // batch_size1
repeats2 = max_batch_size // batch_size2
# Repeat the images to match the largest batch size
image1 = image1.repeat(repeats1, 1, 1, 1)
image2 = image2.repeat(repeats2, 1, 1, 1)
if match_image_size:
# Use first_image_shape if provided; otherwise, default to image1's shape
target_shape = first_image_shape if first_image_shape is not None else image1.shape
original_height = image2.shape[1]
original_width = image2.shape[2]
original_aspect_ratio = original_width / original_height
if direction in ['left', 'right']:
# Match the height and adjust the width to preserve aspect ratio
target_height = target_shape[1] # B, H, W, C format
target_width = int(target_height * original_aspect_ratio)
elif direction in ['up', 'down']:
# Match the width and adjust the height to preserve aspect ratio
target_width = target_shape[2] # B, H, W, C format
target_height = int(target_width / original_aspect_ratio)
# Adjust image2 to the expected format for common_upscale
image2_for_upscale = image2.movedim(-1, 1) # Move C to the second position (B, C, H, W)
# Resize image2 to match the target size while preserving aspect ratio
image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled")
# Adjust image2 back to the original format (B, H, W, C) after resizing
image2_resized = image2_resized.movedim(1, -1)
else:
image2_resized = image2
# Ensure both images have the same number of channels
channels_image1 = image1.shape[-1]
channels_image2 = image2_resized.shape[-1]
if channels_image1 != channels_image2:
if channels_image1 < channels_image2:
# Add alpha channel to image1 if image2 has it
alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device)
image1 = torch.cat((image1, alpha_channel), dim=-1)
else:
# Add alpha channel to image2 if image1 has it
alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device)
image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1)
# Concatenate based on the specified direction
if direction == 'right':
concatenated_image = torch.cat((image1, image2_resized), dim=2) # Concatenate along width
elif direction == 'down':
concatenated_image = torch.cat((image1, image2_resized), dim=1) # Concatenate along height
elif direction == 'left':
concatenated_image = torch.cat((image2_resized, image1), dim=2) # Concatenate along width
elif direction == 'up':
concatenated_image = torch.cat((image2_resized, image1), dim=1) # Concatenate along height
return concatenated_image,
import torch # Make sure you have PyTorch installed
class ImageConcatFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
"num_columns": ("INT", {"default": 3, "min": 1, "max": 255, "step": 1}),
"match_image_size": ("BOOLEAN", {"default": False}),
"max_resolution": ("INT", {"default": 4096}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "concat"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Concatenates images from a batch into a grid with a specified number of columns.
"""
def concat(self, images, num_columns, match_image_size, max_resolution):
# Assuming images is a batch of images (B, H, W, C)
batch_size, height, width, channels = images.shape
num_rows = (batch_size + num_columns - 1) // num_columns # Calculate number of rows
print(f"Initial dimensions: batch_size={batch_size}, height={height}, width={width}, channels={channels}")
print(f"num_rows={num_rows}, num_columns={num_columns}")
if match_image_size:
target_shape = images[0].shape
resized_images = []
for image in images:
original_height = image.shape[0]
original_width = image.shape[1]
original_aspect_ratio = original_width / original_height
if original_aspect_ratio > 1:
target_height = target_shape[0]
target_width = int(target_height * original_aspect_ratio)
else:
target_width = target_shape[1]
target_height = int(target_width / original_aspect_ratio)
print(f"Resizing image from ({original_height}, {original_width}) to ({target_height}, {target_width})")
# Resize the image to match the target size while preserving aspect ratio
resized_image = common_upscale(image.movedim(-1, 0), target_width, target_height, "lanczos", "disabled")
resized_image = resized_image.movedim(0, -1) # Move channels back to the last dimension
resized_images.append(resized_image)
# Convert the list of resized images back to a tensor
images = torch.stack(resized_images)
height, width = target_shape[:2] # Update height and width
# Initialize an empty grid
grid_height = num_rows * height
grid_width = num_columns * width
print(f"Grid dimensions before scaling: grid_height={grid_height}, grid_width={grid_width}")
# Original scale factor calculation remains unchanged
scale_factor = min(max_resolution / grid_height, max_resolution / grid_width, 1.0)
# Apply scale factor to height and width
scaled_height = height * scale_factor
scaled_width = width * scale_factor
# Round scaled dimensions to the nearest number divisible by 8
height = max(1, int(round(scaled_height / 8) * 8))
width = max(1, int(round(scaled_width / 8) * 8))
if abs(scaled_height - height) > 4:
height = max(1, int(round((scaled_height + 4) / 8) * 8))
if abs(scaled_width - width) > 4:
width = max(1, int(round((scaled_width + 4) / 8) * 8))
# Recalculate grid dimensions with adjusted height and width
grid_height = num_rows * height
grid_width = num_columns * width
print(f"Grid dimensions after scaling: grid_height={grid_height}, grid_width={grid_width}")
print(f"Final image dimensions: height={height}, width={width}")
grid = torch.zeros((grid_height, grid_width, channels), dtype=images.dtype)
for idx, image in enumerate(images):
resized_image = torch.nn.functional.interpolate(image.unsqueeze(0).permute(0, 3, 1, 2), size=(height, width), mode="bilinear").squeeze().permute(1, 2, 0)
row = idx // num_columns
col = idx % num_columns
grid[row*height:(row+1)*height, col*width:(col+1)*width, :] = resized_image
return grid.unsqueeze(0),
class ImageGridComposite2x2:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"image3": ("IMAGE",),
"image4": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "compositegrid"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Concatenates the 4 input images into a 2x2 grid.
"""
def compositegrid(self, image1, image2, image3, image4):
top_row = torch.cat((image1, image2), dim=2)
bottom_row = torch.cat((image3, image4), dim=2)
grid = torch.cat((top_row, bottom_row), dim=1)
return (grid,)
class ImageGridComposite3x3:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"image3": ("IMAGE",),
"image4": ("IMAGE",),
"image5": ("IMAGE",),
"image6": ("IMAGE",),
"image7": ("IMAGE",),
"image8": ("IMAGE",),
"image9": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "compositegrid"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Concatenates the 9 input images into a 3x3 grid.
"""
def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9):
top_row = torch.cat((image1, image2, image3), dim=2)
mid_row = torch.cat((image4, image5, image6), dim=2)
bottom_row = torch.cat((image7, image8, image9), dim=2)
grid = torch.cat((top_row, mid_row, bottom_row), dim=1)
return (grid,)
class ImageBatchTestPattern:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
"start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
"font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generatetestpattern"
CATEGORY = "KJNodes/text"
def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y):
out = []
# Generate the sequential numbers for each image
numbers = np.arange(start_from, start_from + batch_size)
font_path = folder_paths.get_full_path("kjnodes_fonts", font)
for number in numbers:
# Create a black image with the number as a random color text
image = Image.new("RGB", (width, height), color='black')
draw = ImageDraw.Draw(image)
# Generate a random color for the text
font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
font = ImageFont.truetype(font_path, font_size)
# Get the size of the text and position it in the center
text = str(number)
try:
draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga'])
except:
draw.text((text_x, text_y), text, font=font, fill=font_color,)
# Convert the image to a numpy array and normalize the pixel values
image_np = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_np).unsqueeze(0)
out.append(image_tensor)
out_tensor = torch.cat(out, dim=0)
return (out_tensor,)
class ImageGrabPIL:
@classmethod
def IS_CHANGED(cls):
return
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "screencap"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Captures an area specified by screen coordinates.
Can be used for realtime diffusion with autoqueue.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
},
}
def screencap(self, x, y, width, height, num_frames, delay):
start_time = time.time()
captures = []
bbox = (x, y, x + width, y + height)
for _ in range(num_frames):
# Capture screen
screen_capture = ImageGrab.grab(bbox=bbox)
screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0)
captures.append(screen_capture_torch)
# Wait for a short delay if more than one frame is to be captured
if num_frames > 1:
time.sleep(delay)
elapsed_time = time.time() - start_time
print(f"screengrab took {elapsed_time} seconds.")
return (torch.cat(captures, dim=0),)
class Screencap_mss:
@classmethod
def IS_CHANGED(s, **kwargs):
return float("NaN")
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "screencap"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Captures an area specified by screen coordinates.
Can be used for realtime diffusion with autoqueue.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"x": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}),
"y": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}),
"width": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}),
"height": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}),
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
},
}
def screencap(self, x, y, width, height, num_frames, delay):
from mss import mss
captures = []
with mss() as sct:
bbox = {'top': y, 'left': x, 'width': width, 'height': height}
for _ in range(num_frames):
sct_img = sct.grab(bbox)
img_np = np.array(sct_img)
img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0
captures.append(img_torch)
if num_frames > 1:
time.sleep(delay)
return (torch.stack(captures, 0),)
class WebcamCaptureCV2:
@classmethod
def IS_CHANGED(cls):
return
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "capture"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Captures a frame from a webcam using CV2.
Can be used for realtime diffusion with autoqueue.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
"cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"release": ("BOOLEAN", {"default": False}),
},
}
def capture(self, x, y, cam_index, width, height, release):
# Check if the camera index has changed or the capture object doesn't exist
if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index:
if hasattr(self, "cap") and self.cap is not None:
self.cap.release()
self.current_cam_index = cam_index
self.cap = cv2.VideoCapture(cam_index)
try:
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
except:
pass
if not self.cap.isOpened():
raise Exception("Could not open webcam")
ret, frame = self.cap.read()
if not ret:
raise Exception("Failed to capture image from webcam")
# Crop the frame to the specified bbox
frame = frame[y:y+height, x:x+width]
img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0
if release:
self.cap.release()
self.cap = None
return (img_torch.unsqueeze(0),)
class AddLabel:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image":("IMAGE",),
"text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}),
"text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}),
"height": ("INT", {"default": 48, "min": -1, "max": 4096, "step": 1}),
"font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}),
"font_color": ("STRING", {"default": "white"}),
"label_color": ("STRING", {"default": "black"}),
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
"text": ("STRING", {"default": "Text"}),
"direction": (
[ 'up',
'down',
'left',
'right',
'overlay'
],
{
"default": 'up'
}),
},
"optional":{
"caption": ("STRING", {"default": "", "forceInput": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "addlabel"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Creates a new with the given text, and concatenates it to
either above or below the input image.
Note that this changes the input image's height!
Fonts are loaded from this folder:
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
"""
def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""):
batch_size = image.shape[0]
width = image.shape[2]
font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font)
def process_image(input_image, caption_text):
font = ImageFont.truetype(font_path, font_size)
words = caption_text.split()
lines = []
current_line = []
current_line_width = 0
for word in words:
word_width = font.getbbox(word)[2]
if current_line_width + word_width <= width - 2 * text_x:
current_line.append(word)
current_line_width += word_width + font.getbbox(" ")[2] # Add space width
else:
lines.append(" ".join(current_line))
current_line = [word]
current_line_width = word_width
if current_line:
lines.append(" ".join(current_line))
if direction == 'overlay':
pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8))
else:
if height == -1:
# Adjust the image height automatically
margin = 8
required_height = (text_y + len(lines) * font_size) + margin # Calculate required height
pil_image = Image.new("RGB", (width, required_height), label_color)
else:
# Initialize with a minimal height
label_image = Image.new("RGB", (width, height), label_color)
pil_image = label_image
draw = ImageDraw.Draw(pil_image)
y_offset = text_y
for line in lines:
try:
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
except:
draw.text((text_x, y_offset), line, font=font, fill=font_color)
y_offset += font_size
processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0)
return processed_image
if caption == "":
processed_images = [process_image(img, text) for img in image]
else:
assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images"
processed_images = [process_image(img, cap) for img, cap in zip(image, caption)]
processed_batch = torch.cat(processed_images, dim=0)
# Combine images based on direction
if direction == 'down':
combined_images = torch.cat((image, processed_batch), dim=1)
elif direction == 'up':
combined_images = torch.cat((processed_batch, image), dim=1)
elif direction == 'left':
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
combined_images = torch.cat((processed_batch, image), dim=2)
elif direction == 'right':
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
combined_images = torch.cat((image, processed_batch), dim=2)
else:
combined_images = processed_batch
return (combined_images,)
class GetImageSizeAndCount:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE","INT", "INT", "INT",)
RETURN_NAMES = ("image", "width", "height", "count",)
FUNCTION = "getsize"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Returns width, height and batch size of the image,
and passes it through unchanged.
"""
def getsize(self, image):
width = image.shape[2]
height = image.shape[1]
count = image.shape[0]
return {"ui": {
"text": [f"{count}x{width}x{height}"]},
"result": (image, width, height, count)
}
class ImageBatchRepeatInterleaving:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Repeats each image in a batch by the specified number of times.
Example batch of 5 images: 0, 1 ,2, 3, 4
with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"repeats": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
}
def repeat(self, images, repeats):
repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0)
return (repeated_images, )
class ImageUpscaleWithModelBatched:
@classmethod
def INPUT_TYPES(s):
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
"images": ("IMAGE",),
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Same as ComfyUI native model upscaling node,
but allows setting sub-batches for reduced VRAM usage.
"""
def upscale(self, upscale_model, images, per_batch):
device = model_management.get_torch_device()
upscale_model.to(device)
in_img = images.movedim(-1,-3)
steps = in_img.shape[0]
pbar = ProgressBar(steps)
t = []
for start_idx in range(0, in_img.shape[0], per_batch):
sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device))
t.append(sub_images.cpu())
# Calculate the number of images processed in this batch
batch_count = sub_images.shape[0]
# Update the progress bar by the number of images processed in this batch
pbar.update(batch_count)
upscale_model.cpu()
t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu()
return (t,)
class ImageNormalize_Neg1_To_1:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "normalize"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Normalize the images to be in the range [-1, 1]
"""
def normalize(self,images):
images = images * 2.0 - 1.0
return (images,)
class RemapImageRange:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
"clamp": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "remap"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Remaps the image values to the specified range.
"""
def remap(self, image, min, max, clamp):
if image.dtype == torch.float16:
image = image.to(torch.float32)
image = min + image * (max - min)
if clamp:
image = torch.clamp(image, min=0.0, max=1.0)
return (image, )
class SplitImageChannels:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK")
RETURN_NAMES = ("red", "green", "blue", "mask")
FUNCTION = "split"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Splits image channels into images where the selected channel
is repeated for all channels, and the alpha as a mask.
"""
def split(self, image):
red = image[:, :, :, 0:1] # Red channel
green = image[:, :, :, 1:2] # Green channel
blue = image[:, :, :, 2:3] # Blue channel
alpha = image[:, :, :, 3:4] # Alpha channel
alpha = alpha.squeeze(-1)
# Repeat the selected channel for all channels
red = torch.cat([red, red, red], dim=3)
green = torch.cat([green, green, green], dim=3)
blue = torch.cat([blue, blue, blue], dim=3)
return (red, green, blue, alpha)
class MergeImageChannels:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"red": ("IMAGE",),
"green": ("IMAGE",),
"blue": ("IMAGE",),
},
"optional": {
"alpha": ("MASK", {"default": None}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "merge"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Merges channel data into an image.
"""
def merge(self, red, green, blue, alpha=None):
image = torch.stack([
red[..., 0, None], # Red channel
green[..., 1, None], # Green channel
blue[..., 2, None] # Blue channel
], dim=-1)
image = image.squeeze(-2)
if alpha is not None:
image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1)
return (image,)
class ImagePadForOutpaintMasked:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, left, top, right, bottom, feathering, mask=None):
if mask is not None:
if torch.allclose(mask, torch.zeros_like(mask)):
print("Warning: The incoming mask is fully black. Handling it as None.")
mask = None
B, H, W, C = image.size()
new_image = torch.ones(
(B, H + top + bottom, W + left + right, C),
dtype=torch.float32,
) * 0.5
new_image[:, top:top + H, left:left + W, :] = image
if mask is None:
new_mask = torch.ones(
(B, H + top + bottom, W + left + right),
dtype=torch.float32,
)
t = torch.zeros(
(B, H, W),
dtype=torch.float32
)
else:
# If a mask is provided, pad it to fit the new image size
mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0)
mask = 1 - mask
t = torch.zeros_like(mask)
if feathering > 0 and feathering * 2 < H and feathering * 2 < W:
for i in range(H):
for j in range(W):
dt = i if top != 0 else H
db = H - i if bottom != 0 else H
dl = j if left != 0 else W
dr = W - j if right != 0 else W
d = min(dt, db, dl, dr)
if d >= feathering:
continue
v = (feathering - d) / feathering
if mask is None:
t[:, i, j] = v * v
else:
t[:, top + i, left + j] = v * v
if mask is None:
new_mask[:, top:top + H, left:left + W] = t
return (new_image, new_mask,)
else:
return (new_image, mask,)
class ImagePadForOutpaintTargetSize:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"upscale_method": (s.upscale_methods,),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None):
B, H, W, C = image.size()
new_height = H
new_width = W
# Calculate the scaling factor while maintaining aspect ratio
scaling_factor = min(target_width / W, target_height / H)
# Check if the image needs to be downscaled
if scaling_factor < 1:
image = image.movedim(-1,1)
# Calculate the new width and height after downscaling
new_width = int(W * scaling_factor)
new_height = int(H * scaling_factor)
# Downscale the image
image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1)
if mask is not None:
mask_scaled = mask.unsqueeze(0) # Add an extra dimension for batch size
mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest")
mask_scaled = mask_scaled.squeeze(0) # Remove the extra dimension after interpolation
else:
mask_scaled = mask
else:
# If downscaling is not needed, use the original image dimensions
image_scaled = image
mask_scaled = mask
# Calculate how much padding is needed to reach the target dimensions
pad_top = max(0, (target_height - new_height) // 2)
pad_bottom = max(0, target_height - new_height - pad_top)
pad_left = max(0, (target_width - new_width) // 2)
pad_right = max(0, target_width - new_width - pad_left)
# Now call the original expand_image with the calculated padding
return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled)
class ImageAndMaskPreview(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask_color": ("STRING", {"default": "255, 255, 255"}),
"pass_through": ("BOOLEAN", {"default": False}),
},
"optional": {
"image": ("IMAGE",),
"mask": ("MASK",),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("composite",)
FUNCTION = "execute"
CATEGORY = "KJNodes"
DESCRIPTION = """
Preview an image or a mask, when both inputs are used
composites the mask on top of the image.
with pass_through on the preview is disabled and the
composite is returned from the composite slot instead,
this allows for the preview to be passed for video combine
nodes for example.
"""
def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
if mask is not None and image is None:
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
elif mask is None and image is not None:
preview = image
elif mask is not None and image is not None:
mask_adjusted = mask * mask_opacity
mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone()
if ',' in mask_color:
color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) # RGB format
else:
mask_color = mask_color.lstrip('#')
color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] # Hex format
mask_image[:, :, :, 0] = color_list[0] / 255 # Red channel
mask_image[:, :, :, 1] = color_list[1] / 255 # Green channel
mask_image[:, :, :, 2] = color_list[2] / 255 # Blue channel
preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted)
if pass_through:
return (preview, )
return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo))
class CrossFadeImages:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crossfadeimages"
CATEGORY = "KJNodes/image"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images_1": ("IMAGE",),
"images_2": ("IMAGE",),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
"transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
},
}
def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level):
def crossfade(images_1, images_2, alpha):
crossfade = (1 - alpha) * images_1 + alpha * images_2
return crossfade
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
def bounce(t):
if t < 0.5:
return self.ease_out(t * 2) * 0.5
else:
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
def elastic(t):
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
def glitchy(t):
return t + 0.1 * math.sin(40 * t)
def exponential_ease_out(t):
return 1 - (1 - t) ** 4
easing_functions = {
"linear": lambda t: t,
"ease_in": ease_in,
"ease_out": ease_out,
"ease_in_out": ease_in_out,
"bounce": bounce,
"elastic": elastic,
"glitchy": glitchy,
"exponential_ease_out": exponential_ease_out,
}
crossfade_images = []
alphas = torch.linspace(start_level, end_level, transitioning_frames)
for i in range(transitioning_frames):
alpha = alphas[i]
image1 = images_1[i + transition_start_index]
image2 = images_2[i + transition_start_index]
easing_function = easing_functions.get(interpolation)
alpha = easing_function(alpha) # Apply the easing function to the alpha value
crossfade_image = crossfade(image1, image2, alpha)
crossfade_images.append(crossfade_image)
# Convert crossfade_images to tensor
crossfade_images = torch.stack(crossfade_images, dim=0)
# Get the last frame result of the interpolation
last_frame = crossfade_images[-1]
# Calculate the number of remaining frames from images_2
remaining_frames = len(images_2) - (transition_start_index + transitioning_frames)
# Crossfade the remaining frames with the last used alpha value
for i in range(remaining_frames):
alpha = alphas[-1]
image1 = images_1[i + transition_start_index + transitioning_frames]
image2 = images_2[i + transition_start_index + transitioning_frames]
easing_function = easing_functions.get(interpolation)
alpha = easing_function(alpha) # Apply the easing function to the alpha value
crossfade_image = crossfade(image1, image2, alpha)
crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0)
# Append the beginning of images_1
beginning_images_1 = images_1[:transition_start_index]
crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0)
return (crossfade_images, )
class CrossFadeImagesMulti:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crossfadeimages"
CATEGORY = "KJNodes/image"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE",),
"image_2": ("IMAGE",),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
},
}
def crossfadeimages(self, inputcount, transitioning_frames, interpolation, **kwargs):
def crossfade(images_1, images_2, alpha):
crossfade = (1 - alpha) * images_1 + alpha * images_2
return crossfade
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
def bounce(t):
if t < 0.5:
return self.ease_out(t * 2) * 0.5
else:
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
def elastic(t):
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
def glitchy(t):
return t + 0.1 * math.sin(40 * t)
def exponential_ease_out(t):
return 1 - (1 - t) ** 4
easing_functions = {
"linear": lambda t: t,
"ease_in": ease_in,
"ease_out": ease_out,
"ease_in_out": ease_in_out,
"bounce": bounce,
"elastic": elastic,
"glitchy": glitchy,
"exponential_ease_out": exponential_ease_out,
}
image_1 = kwargs["image_1"]
height = image_1.shape[1]
width = image_1.shape[2]
easing_function = easing_functions[interpolation]
for c in range(1, inputcount):
frames = []
new_image = kwargs[f"image_{c + 1}"]
new_image_height = new_image.shape[1]
new_image_width = new_image.shape[2]
if new_image_height != height or new_image_width != width:
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled")
new_image = new_image.movedim(1, -1) # Move channels back to the last dimension
last_frame_image_1 = image_1[-1]
first_frame_image_2 = new_image[0]
for frame in range(transitioning_frames):
t = frame / (transitioning_frames - 1)
alpha = easing_function(t)
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
frame_image = crossfade(last_frame_image_1, first_frame_image_2, alpha_tensor)
frames.append(frame_image)
frames = torch.stack(frames)
image_1 = torch.cat((image_1, frames, new_image), dim=0)
return image_1,
def transition_images(images_1, images_2, alpha, transition_type, blur_radius, reverse):
width = images_1.shape[1]
height = images_1.shape[0]
mask = torch.zeros_like(images_1, device=images_1.device)
alpha = alpha.item()
if reverse:
alpha = 1 - alpha
#transitions from matteo's essential nodes
if "horizontal slide" in transition_type:
pos = round(width * alpha)
mask[:, :pos, :] = 1.0
elif "vertical slide" in transition_type:
pos = round(height * alpha)
mask[:pos, :, :] = 1.0
elif "box" in transition_type:
box_w = round(width * alpha)
box_h = round(height * alpha)
x1 = (width - box_w) // 2
y1 = (height - box_h) // 2
x2 = x1 + box_w
y2 = y1 + box_h
mask[y1:y2, x1:x2, :] = 1.0
elif "circle" in transition_type:
radius = math.ceil(math.sqrt(pow(width, 2) + pow(height, 2)) * alpha / 2)
c_x = width // 2
c_y = height // 2
x = torch.arange(0, width, dtype=torch.float32, device="cpu")
y = torch.arange(0, height, dtype=torch.float32, device="cpu")
y, x = torch.meshgrid((y, x), indexing="ij")
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2)
mask[circle] = 1.0
elif "horizontal door" in transition_type:
bar = math.ceil(height * alpha / 2)
if bar > 0:
mask[:bar, :, :] = 1.0
mask[-bar:,:, :] = 1.0
elif "vertical door" in transition_type:
bar = math.ceil(width * alpha / 2)
if bar > 0:
mask[:, :bar,:] = 1.0
mask[:, -bar:,:] = 1.0
elif "fade" in transition_type:
mask[:, :, :] = alpha
mask = gaussian_blur(mask, blur_radius)
return images_1 * (1 - mask) + images_2 * mask
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
def bounce(t):
if t < 0.5:
return ease_out(t * 2) * 0.5
else:
return ease_in((t - 0.5) * 2) * 0.5 + 0.5
def elastic(t):
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
def glitchy(t):
return t + 0.1 * math.sin(40 * t)
def exponential_ease_out(t):
return 1 - (1 - t) ** 4
def gaussian_blur(mask, blur_radius):
if blur_radius > 0:
kernel_size = int(blur_radius * 2) + 1
if kernel_size % 2 == 0:
kernel_size += 1 # Ensure kernel size is odd
sigma = blur_radius / 3
x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32)
x = torch.exp(-0.5 * (x / sigma) ** 2)
kernel1d = x / x.sum()
kernel2d = kernel1d[:, None] * kernel1d[None, :]
kernel2d = kernel2d.to(mask.device)
kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1])
mask = mask.permute(2, 0, 1).unsqueeze(0) # Change to [C, H, W] and add batch dimension
mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1])
mask = mask.squeeze(0).permute(1, 2, 0) # Change back to [H, W, C]
return mask
easing_functions = {
"linear": lambda t: t,
"ease_in": ease_in,
"ease_out": ease_out,
"ease_in_out": ease_in_out,
"bounce": bounce,
"elastic": elastic,
"glitchy": glitchy,
"exponential_ease_out": exponential_ease_out,
}
class TransitionImagesMulti:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transition"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Creates transitions between images.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE",),
"image_2": ("IMAGE",),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],),
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}),
"reverse": ("BOOLEAN", {"default": False}),
"device": (["CPU", "GPU"], {"default": "CPU"}),
},
}
def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse, **kwargs):
gpu = model_management.get_torch_device()
image_1 = kwargs["image_1"]
height = image_1.shape[1]
width = image_1.shape[2]
easing_function = easing_functions[interpolation]
for c in range(1, inputcount):
frames = []
new_image = kwargs[f"image_{c + 1}"]
new_image_height = new_image.shape[1]
new_image_width = new_image.shape[2]
if new_image_height != height or new_image_width != width:
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled")
new_image = new_image.movedim(1, -1) # Move channels back to the last dimension
last_frame_image_1 = image_1[-1]
first_frame_image_2 = new_image[0]
if device == "GPU":
last_frame_image_1 = last_frame_image_1.to(gpu)
first_frame_image_2 = first_frame_image_2.to(gpu)
if reverse:
last_frame_image_1, first_frame_image_2 = first_frame_image_2, last_frame_image_1
for frame in range(transitioning_frames):
t = frame / (transitioning_frames - 1)
alpha = easing_function(t)
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
frame_image = transition_images(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius, reverse)
frames.append(frame_image)
frames = torch.stack(frames).cpu()
image_1 = torch.cat((image_1, frames, new_image), dim=0)
return image_1.cpu(),
class TransitionImagesInBatch:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transition"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Creates transitions between images in a batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],),
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}),
"reverse": ("BOOLEAN", {"default": False}),
"device": (["CPU", "GPU"], {"default": "CPU"}),
},
}
#transitions from matteo's essential nodes
def transition(self, images, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse):
if images.shape[0] == 1:
return images,
gpu = model_management.get_torch_device()
easing_function = easing_functions[interpolation]
images_list = []
pbar = ProgressBar(images.shape[0] - 1)
for i in range(images.shape[0] - 1):
frames = []
image_1 = images[i]
image_2 = images[i + 1]
if device == "GPU":
image_1 = image_1.to(gpu)
image_2 = image_2.to(gpu)
if reverse:
image_1, image_2 = image_2, image_1
for frame in range(transitioning_frames):
t = frame / (transitioning_frames - 1)
alpha = easing_function(t)
alpha_tensor = torch.tensor(alpha, dtype=image_1.dtype, device=image_1.device)
frame_image = transition_images(image_1, image_2, alpha_tensor, transition_type, blur_radius, reverse)
frames.append(frame_image)
pbar.update(1)
frames = torch.stack(frames).cpu()
images_list.append(frames)
images = torch.cat(images_list, dim=0)
return images.cpu(),
class ShuffleImageBatch:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "shuffle"
CATEGORY = "KJNodes/image"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
},
}
def shuffle(self, images, seed):
torch.manual_seed(seed)
B, H, W, C = images.shape
indices = torch.randperm(B)
shuffled_images = images[indices]
return shuffled_images,
class GetImageRangeFromBatch:
RETURN_TYPES = ("IMAGE", "MASK", )
FUNCTION = "imagesfrombatch"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Randomizes image order within a batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}),
"num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
},
"optional": {
"images": ("IMAGE",),
"masks": ("MASK",),
}
}
def imagesfrombatch(self, start_index, num_frames, images=None, masks=None):
chosen_images = None
chosen_masks = None
# Process images if provided
if images is not None:
if start_index == -1:
start_index = len(images) - num_frames
if start_index < 0 or start_index >= len(images):
raise ValueError("Start index is out of range")
end_index = start_index + num_frames
if end_index > len(images):
raise ValueError("End index is out of range")
chosen_images = images[start_index:end_index]
# Process masks if provided
if masks is not None:
if start_index == -1:
start_index = len(masks) - num_frames
if start_index < 0 or start_index >= len(masks):
raise ValueError("Start index is out of range for masks")
end_index = start_index + num_frames
if end_index > len(masks):
raise ValueError("End index is out of range for masks")
chosen_masks = masks[start_index:end_index]
return (chosen_images, chosen_masks,)
class GetImagesFromBatchIndexed:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "indexedimagesfrombatch"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Selects and returns the images at the specified indices as an image batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
},
}
def indexedimagesfrombatch(self, images, indexes):
# Parse the indexes string into a list of integers
index_list = [int(index.strip()) for index in indexes.split(',')]
# Convert list of indices to a PyTorch tensor
indices_tensor = torch.tensor(index_list, dtype=torch.long)
# Select the images at the specified indices
chosen_images = images[indices_tensor]
return (chosen_images,)
class InsertImagesToBatchIndexed:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "insertimagesfrombatch"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Inserts images at the specified indices into the original image batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_images": ("IMAGE",),
"images_to_insert": ("IMAGE",),
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
},
}
def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
# Parse the indexes string into a list of integers
index_list = [int(index.strip()) for index in indexes.split(',')]
# Convert list of indices to a PyTorch tensor
indices_tensor = torch.tensor(index_list, dtype=torch.long)
# Ensure the images_to_insert is a tensor
if not isinstance(images_to_insert, torch.Tensor):
images_to_insert = torch.tensor(images_to_insert)
# Insert the images at the specified indices
for index, image in zip(indices_tensor, images_to_insert):
original_images[index] = image
return (original_images,)
class ReplaceImagesInBatch:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "replace"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Replaces the images in a batch, starting from the specified start index,
with the replacement images.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_images": ("IMAGE",),
"replacement_images": ("IMAGE",),
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
},
}
def replace(self, original_images, replacement_images, start_index):
images = None
if start_index >= len(original_images):
raise ValueError("GetImageRangeFromBatch: Start index is out of range")
end_index = start_index + len(replacement_images)
if end_index > len(original_images):
raise ValueError("GetImageRangeFromBatch: End index is out of range")
# Create a copy of the original_images tensor
original_images_copy = original_images.clone()
original_images_copy[start_index:end_index] = replacement_images
images = original_images_copy
return (images, )
class ReverseImageBatch:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "reverseimagebatch"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Reverses the order of the images in a batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
},
}
def reverseimagebatch(self, images):
reversed_images = torch.flip(images, [0])
return (reversed_images, )
class ImageBatchMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE", ),
"image_2": ("IMAGE", ),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "combine"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Creates an image batch from multiple images.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, **kwargs):
from nodes import ImageBatch
image_batch_node = ImageBatch()
image = kwargs["image_1"]
for c in range(1, inputcount):
new_image = kwargs[f"image_{c + 1}"]
image, = image_batch_node.batch(image, new_image)
return (image,)
class ImageAddMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE", ),
"image_2": ("IMAGE", ),
"blending": (
[ 'add',
'subtract',
'multiply',
'difference',
],
{
"default": 'add'
}),
"blend_amount": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "add"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Add blends multiple images together.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def add(self, inputcount, blending, blend_amount, **kwargs):
image = kwargs["image_1"]
for c in range(1, inputcount):
new_image = kwargs[f"image_{c + 1}"]
if blending == "add":
image = torch.add(image * blend_amount, new_image * blend_amount)
elif blending == "subtract":
image = torch.sub(image * blend_amount, new_image * blend_amount)
elif blending == "multiply":
image = torch.mul(image * blend_amount, new_image * blend_amount)
elif blending == "difference":
image = torch.sub(image, new_image)
return (image,)
class ImageConcatMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"image_1": ("IMAGE", ),
"image_2": ("IMAGE", ),
"direction": (
[ 'right',
'down',
'left',
'up',
],
{
"default": 'right'
}),
"match_image_size": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "combine"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Creates an image from multiple images.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, direction, match_image_size, **kwargs):
image = kwargs["image_1"]
first_image_shape = None
if first_image_shape is None:
first_image_shape = image.shape
for c in range(1, inputcount):
new_image = kwargs[f"image_{c + 1}"]
image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape)
first_image_shape = None
return (image,)
class PreviewAnimation:
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 1
methods = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
},
"optional": {
"images": ("IMAGE", ),
"masks": ("MASK", ),
},
}
RETURN_TYPES = ()
FUNCTION = "preview"
OUTPUT_NODE = True
CATEGORY = "KJNodes/image"
def preview(self, fps, images=None, masks=None):
filename_prefix = "AnimPreview"
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list()
pil_images = []
if images is not None and masks is not None:
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
for mask in masks:
if pil_images:
mask_np = mask.cpu().numpy()
mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8) # Convert to values between 0 and 255
mask_img = Image.fromarray(mask_np, mode='L')
img = pil_images.pop(0) # Remove and get the first image
img = img.convert("RGBA") # Convert base image to RGBA
# Create a new RGBA image based on the grayscale mask
rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255))
rgba_mask_img.putalpha(mask_img) # Use the mask image as the alpha channel
# Composite the RGBA mask onto the base image
composited_img = Image.alpha_composite(img, rgba_mask_img)
pil_images.append(composited_img) # Add the composited image back
elif images is not None and masks is None:
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
elif masks is not None and images is None:
for mask in masks:
mask_np = 255. * mask.cpu().numpy()
mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8))
pil_images.append(mask_img)
else:
print("PreviewAnimation: No images or masks provided")
return { "ui": { "images": results, "animated": (None,), "text": "empty" }}
num_frames = len(pil_images)
c = len(pil_images)
for i in range(0, c, num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=80, method=4)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
animated = num_frames != 1
return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } }
class ImageResizeKJ:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"upscale_method": (s.upscale_methods,),
"keep_proportion": ("BOOLEAN", { "default": False }),
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
},
"optional" : {
"width_input": ("INT", { "forceInput": True}),
"height_input": ("INT", { "forceInput": True}),
"get_image_size": ("IMAGE",),
"crop": (["disabled","center"],),
}
}
RETURN_TYPES = ("IMAGE", "INT", "INT",)
RETURN_NAMES = ("IMAGE", "width", "height",)
FUNCTION = "resize"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Resizes the image to the specified width and height.
Size can be retrieved from the inputs, and the final scale
is determined in this order of importance:
- get_image_size
- width_input and height_input
- width and height widgets
Keep proportions keeps the aspect ratio of the image, by
highest dimension.
"""
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by,
width_input=None, height_input=None, get_image_size=None, crop="disabled"):
B, H, W, C = image.shape
if width_input:
width = width_input
if height_input:
height = height_input
if get_image_size is not None:
_, height, width, _ = get_image_size.shape
if keep_proportion and get_image_size is None:
# If one of the dimensions is zero, calculate it to maintain the aspect ratio
if width == 0 and height != 0:
ratio = height / H
width = round(W * ratio)
elif height == 0 and width != 0:
ratio = width / W
height = round(H * ratio)
elif width != 0 and height != 0:
# Scale based on which dimension is smaller in proportion to the desired dimensions
ratio = min(width / W, height / H)
width = round(W * ratio)
height = round(H * ratio)
else:
if width == 0:
width = W
if height == 0:
height = H
if divisible_by > 1 and get_image_size is None:
width = width - (width % divisible_by)
height = height - (height % divisible_by)
image = image.movedim(-1,1)
image = common_upscale(image, width, height, upscale_method, crop)
image = image.movedim(1,-1)
return(image, image.shape[2], image.shape[1],)
import pathlib
class LoadAndResizeImage:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f.name for f in pathlib.Path(input_dir).iterdir() if f.is_file()]
return {"required":
{
"image": (sorted(files), {"image_upload": True}),
"resize": ("BOOLEAN", { "default": False }),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
"keep_proportion": ("BOOLEAN", { "default": False }),
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
"mask_channel": (s._color_channels, {"tooltip": "Channel to use for the mask output"}),
"background_color": ("STRING", { "default": "", "tooltip": "Fills the alpha channel with the specified color."}),
},
}
CATEGORY = "KJNodes/image"
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT", "STRING",)
RETURN_NAMES = ("image", "mask", "width", "height","image_path",)
FUNCTION = "load_image"
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel, background_color):
from PIL import ImageColor, Image, ImageOps, ImageSequence
import numpy as np
import torch
image_path = folder_paths.get_annotated_filepath(image)
import node_helpers
img = node_helpers.pillow(Image.open, image_path)
# Process the background_color
if background_color:
try:
# Try to parse as RGB tuple
bg_color_rgba = tuple(int(x.strip()) for x in background_color.split(','))
except ValueError:
# If parsing fails, it might be a hex color or named color
if background_color.startswith('#') or background_color.lower() in ImageColor.colormap:
bg_color_rgba = ImageColor.getrgb(background_color)
else:
raise ValueError(f"Invalid background color: {background_color}")
bg_color_rgba += (255,) # Add alpha channel
else:
bg_color_rgba = None # No background color specified
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
W, H = img.size
if resize:
if keep_proportion:
ratio = min(width / W, height / H)
width = round(W * ratio)
height = round(H * ratio)
else:
if width == 0:
width = W
if height == 0:
height = H
if divisible_by > 1:
width = width - (width % divisible_by)
height = height - (height % divisible_by)
else:
width, height = W, H
for frame in ImageSequence.Iterator(img):
frame = node_helpers.pillow(ImageOps.exif_transpose, frame)
if frame.mode == 'I':
frame = frame.point(lambda i: i * (1 / 255))
if frame.mode == 'P':
frame = frame.convert("RGBA")
elif 'A' in frame.getbands():
frame = frame.convert("RGBA")
# Extract alpha channel if it exists
if 'A' in frame.getbands() and bg_color_rgba:
alpha_mask = np.array(frame.getchannel('A')).astype(np.float32) / 255.0
alpha_mask = 1. - torch.from_numpy(alpha_mask)
bg_image = Image.new("RGBA", frame.size, bg_color_rgba)
# Composite the frame onto the background
frame = Image.alpha_composite(bg_image, frame)
else:
alpha_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
image = frame.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
if resize:
image = image.resize((width, height), Image.Resampling.BILINEAR)
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
c = mask_channel[0].upper()
if c in frame.getbands():
if resize:
frame = frame.resize((width, height), Image.Resampling.BILINEAR)
mask = np.array(frame.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
if c == 'A' and bg_color_rgba:
mask = alpha_mask
elif c == 'A':
mask = 1. - mask
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
if repeat > 1:
output_image = output_image.repeat(repeat, 1, 1, 1)
output_mask = output_mask.repeat(repeat, 1, 1)
return (output_image, output_mask, width, height, image_path)
# @classmethod
# def IS_CHANGED(s, image, **kwargs):
# image_path = folder_paths.get_annotated_filepath(image)
# m = hashlib.sha256()
# with open(image_path, 'rb') as f:
# m.update(f.read())
# return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImagesFromFolderKJ:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder": ("STRING", {"default": ""}),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "INT", "STRING",)
RETURN_NAMES = ("image", "mask", "count", "image_path",)
FUNCTION = "load_images"
CATEGORY = "image"
def load_images(self, folder, image_load_cap, start_index):
if not os.path.isdir(folder):
raise FileNotFoundError(f"Folder '{folder} cannot be found.'")
dir_files = os.listdir(folder)
if len(dir_files) == 0:
raise FileNotFoundError(f"No files in directory '{folder}'.")
# Filter files by extension
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
dir_files = sorted(dir_files)
dir_files = [os.path.join(folder, x) for x in dir_files]
# start at start_index
dir_files = dir_files[start_index:]
images = []
masks = []
image_path_list = []
limit_images = False
if image_load_cap > 0:
limit_images = True
image_count = 0
has_non_empty_mask = False
for image_path in dir_files:
if os.path.isdir(image_path) and os.path.ex:
continue
if limit_images and image_count >= image_load_cap:
break
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
has_non_empty_mask = True
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
images.append(image)
masks.append(mask)
image_path_list.append(image_path)
image_count += 1
if len(images) == 1:
return (images[0], masks[0], 1, image_path_list)
elif len(images) > 1:
image1 = images[0]
mask1 = None
for image2 in images[1:]:
if image1.shape[1:] != image2.shape[1:]:
image2 = common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
image1 = torch.cat((image1, image2), dim=0)
for mask2 in masks[1:]:
if has_non_empty_mask:
if image1.shape[1:3] != mask2.shape:
mask2 = torch.nn.functional.interpolate(mask2.unsqueeze(0).unsqueeze(0), size=(image1.shape[2], image1.shape[1]), mode='bilinear', align_corners=False)
mask2 = mask2.squeeze(0)
else:
mask2 = mask2.unsqueeze(0)
else:
mask2 = mask2.unsqueeze(0)
if mask1 is None:
mask1 = mask2
else:
mask1 = torch.cat((mask1, mask2), dim=0)
return (image1, mask1, len(images), image_path_list)
class ImageGridtoBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE", ),
"columns": ("INT", {"default": 3, "min": 1, "max": 8, "tooltip": "The number of columns in the grid."}),
"rows": ("INT", {"default": 0, "min": 1, "max": 8, "tooltip": "The number of rows in the grid. Set to 0 for automatic calculation."}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decompose"
CATEGORY = "KJNodes/image"
DESCRIPTION = "Converts a grid of images to a batch of images."
def decompose(self, image, columns, rows):
B, H, W, C = image.shape
print("input size: ", image.shape)
# Calculate cell width, rounding down
cell_width = W // columns
if rows == 0:
# If rows is 0, calculate number of full rows
rows = H // cell_height
else:
# If rows is specified, adjust cell_height
cell_height = H // rows
# Crop the image to fit full cells
image = image[:, :rows*cell_height, :columns*cell_width, :]
# Reshape and permute the image to get the grid
image = image.view(B, rows, cell_height, columns, cell_width, C)
image = image.permute(0, 1, 3, 2, 4, 5).contiguous()
image = image.view(B, rows * columns, cell_height, cell_width, C)
# Reshape to the final batch tensor
img_tensor = image.view(-1, cell_height, cell_width, C)
return (img_tensor,)
class SaveImageKJ:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE", {"tooltip": "The images to save."}),
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
"output_folder": ("STRING", {"default": "output", "tooltip": "The folder to save the images to."}),
},
"optional": {
"caption_file_extension": ("STRING", {"default": ".txt", "tooltip": "The extension for the caption file."}),
"caption": ("STRING", {"forceInput": True, "tooltip": "string to save as .txt file"}),
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("filename",)
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image"
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
def save_images(self, images, output_folder, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None, caption=None, caption_file_extension=".txt"):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
if output_folder != "output":
if not os.path.exists(output_folder):
os.makedirs(output_folder, exist_ok=True)
full_output_folder = output_folder
results = list()
for (batch_number, image) in enumerate(images):
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
base_file_name = f"{filename_with_batch_num}_{counter:05}_"
file = f"{base_file_name}.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
if caption is not None:
txt_file = base_file_name + caption_file_extension
file_path = os.path.join(full_output_folder, txt_file)
with open(file_path, 'w') as f:
f.write(caption)
counter += 1
return { "ui": {
"images": results },
"result": (file,) }
to_pil_image = T.ToPILImage()
class FastPreview:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE", ),
"format": (["JPEG", "PNG", "WEBP"], {"default": "JPEG"}),
"quality" : ("INT", {"default": 75, "min": 1, "max": 100, "step": 1}),
},
}
RETURN_TYPES = ()
FUNCTION = "preview"
CATEGORY = "KJNodes/experimental"
OUTPUT_NODE = True
def preview(self, image, format, quality):
pil_image = to_pil_image(image[0].permute(2, 0, 1))
with io.BytesIO() as buffered:
pil_image.save(buffered, format=format, quality=quality)
img_bytes = buffered.getvalue()
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
return {
"ui": {"bg_image": [img_base64]},
"result": ()
}
class ImageCropByMaskAndResize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"mask": ("MASK", ),
"base_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"padding": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"min_crop_resolution": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"max_crop_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "BBOX", )
RETURN_NAMES = ("images", "masks", "bbox",)
FUNCTION = "crop"
CATEGORY = "KJNodes/image"
def crop_by_mask(self, mask, padding=0, min_crop_resolution=None, max_crop_resolution=None):
iy, ix = (mask == 1).nonzero(as_tuple=True)
h0, w0 = mask.shape
if iy.numel() == 0:
x_c = w0 / 2.0
y_c = h0 / 2.0
width = 0
height = 0
else:
x_min = ix.min().item()
x_max = ix.max().item()
y_min = iy.min().item()
y_max = iy.max().item()
width = x_max - x_min
height = y_max - y_min
if width > w0 or height > h0:
raise Exception("Masked area out of bounds")
x_c = (x_min + x_max) / 2.0
y_c = (y_min + y_max) / 2.0
if min_crop_resolution:
width = max(width, min_crop_resolution)
height = max(height, min_crop_resolution)
if max_crop_resolution:
width = min(width, max_crop_resolution)
height = min(height, max_crop_resolution)
if w0 <= width:
x0 = 0
w = w0
else:
x0 = max(0, x_c - width / 2 - padding)
w = width + 2 * padding
if x0 + w > w0:
x0 = w0 - w
if h0 <= height:
y0 = 0
h = h0
else:
y0 = max(0, y_c - height / 2 - padding)
h = height + 2 * padding
if y0 + h > h0:
y0 = h0 - h
return (int(x0), int(y0), int(w), int(h))
def crop(self, image, mask, base_resolution, padding=0, min_crop_resolution=128, max_crop_resolution=512):
mask = mask.round()
image_list = []
mask_list = []
bbox_list = []
# First, collect all bounding boxes
bbox_params = []
aspect_ratios = []
for i in range(image.shape[0]):
x0, y0, w, h = self.crop_by_mask(mask[i], padding, min_crop_resolution, max_crop_resolution)
bbox_params.append((x0, y0, w, h))
aspect_ratios.append(w / h)
# Find maximum width and height
max_w = max([w for x0, y0, w, h in bbox_params])
max_h = max([h for x0, y0, w, h in bbox_params])
max_aspect_ratio = max(aspect_ratios)
# Ensure dimensions are divisible by 16
max_w = (max_w + 15) // 16 * 16
max_h = (max_h + 15) // 16 * 16
# Calculate common target dimensions
if max_aspect_ratio > 1:
target_width = base_resolution
target_height = int(base_resolution / max_aspect_ratio)
else:
target_height = base_resolution
target_width = int(base_resolution * max_aspect_ratio)
for i in range(image.shape[0]):
x0, y0, w, h = bbox_params[i]
# Adjust cropping to use maximum width and height
x_center = x0 + w / 2
y_center = y0 + h / 2
x0_new = int(max(0, x_center - max_w / 2))
y0_new = int(max(0, y_center - max_h / 2))
x1_new = int(min(x0_new + max_w, image.shape[2]))
y1_new = int(min(y0_new + max_h, image.shape[1]))
x0_new = x1_new - max_w
y0_new = y1_new - max_h
cropped_image = image[i][y0_new:y1_new, x0_new:x1_new, :]
cropped_mask = mask[i][y0_new:y1_new, x0_new:x1_new]
# Ensure dimensions are divisible by 16
target_width = (target_width + 15) // 16 * 16
target_height = (target_height + 15) // 16 * 16
cropped_image = cropped_image.unsqueeze(0).movedim(-1, 1) # Move C to the second position (B, C, H, W)
cropped_image = common_upscale(cropped_image, target_width, target_height, "lanczos", "disabled")
cropped_image = cropped_image.movedim(1, -1).squeeze(0)
cropped_mask = cropped_mask.unsqueeze(0).unsqueeze(0)
cropped_mask = common_upscale(cropped_mask, target_width, target_height, 'bilinear', "disabled")
cropped_mask = cropped_mask.squeeze(0).squeeze(0)
image_list.append(cropped_image)
mask_list.append(cropped_mask)
bbox_list.append((x0_new, y0_new, x1_new, y1_new))
return (torch.stack(image_list), torch.stack(mask_list), bbox_list)
class ImageUncropByMask:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"destination": ("IMAGE",),
"source": ("IMAGE",),
"mask": ("MASK",),
"bbox": ("BBOX",),
},
}
CATEGORY = "KJNodes/image"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "uncrop"
def uncrop(self, destination, source, mask, bbox=None):
output_list = []
B, H, W, C = destination.shape
for i in range(source.shape[0]):
x0, y0, x1, y1 = bbox[i]
bbox_height = y1 - y0
bbox_width = x1 - x0
# Resize source image to match the bounding box dimensions
#resized_source = F.interpolate(source[i].unsqueeze(0).movedim(-1, 1), size=(bbox_height, bbox_width), mode='bilinear', align_corners=False)
resized_source = common_upscale(source[i].unsqueeze(0).movedim(-1, 1), bbox_width, bbox_height, "lanczos", "disabled")
resized_source = resized_source.movedim(1, -1).squeeze(0)
# Resize mask to match the bounding box dimensions
resized_mask = common_upscale(mask[i].unsqueeze(0).unsqueeze(0), bbox_width, bbox_height, "bilinear", "disabled")
resized_mask = resized_mask.squeeze(0).squeeze(0)
# Calculate padding values
pad_left = x0
pad_right = W - x1
pad_top = y0
pad_bottom = H - y1
# Pad the resized source image and mask to fit the destination dimensions
padded_source = F.pad(resized_source, pad=(0, 0, pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
padded_mask = F.pad(resized_mask, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
# Ensure the padded mask has the correct shape
padded_mask = padded_mask.unsqueeze(2).expand(-1, -1, destination[i].shape[2])
# Ensure the padded source has the correct shape
padded_source = padded_source.unsqueeze(2).expand(-1, -1, -1, destination[i].shape[2]).squeeze(2)
# Combine the destination and padded source images using the mask
result = destination[i] * (1.0 - padded_mask) + padded_source * padded_mask
output_list.append(result)
return (torch.stack(output_list),) |