File size: 24,746 Bytes
5b1fe9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:47:37 2024

@author: Ashmitha
"""

# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:25:57 2024

@author: Ashmitha
"""

# -*- coding: utf-8 -*-
"""
Created on Sat Nov  9 15:44:40 2024

@author: Ashmitha
"""

import pandas as pd
import numpy as np
import gradio as gr
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile

#-------------------------------------Feature selection---------------------------------------------------------------------------------------------

def RandomForestFeatureSelection(trainX, trainy, num_features=60):
    rf = RandomForestRegressor(n_estimators=1000, random_state=50)
    rf.fit(trainX, trainy)
    
    # Get feature importances
    importances = rf.feature_importances_
    
    # Select the top N important features
    indices = np.argsort(importances)[-num_features:]
    return indices 
#----------------------------------------------------------GRU Model---------------------------------------------------------------------
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, Dense, BatchNormalization, Dropout, LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel

def GRUModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.001, l2_reg=0.001, dropout_rate=0.2, feature_selection=True):
    
    # Apply feature selection using Random Forest Regressor
    if feature_selection:
        # Use RandomForestRegressor to rank features by importance
        rf = RandomForestRegressor(n_estimators=100, random_state=42)
        rf.fit(trainX, trainy)
        
        # Select features with importance greater than a threshold (e.g., mean importance)
        selector = SelectFromModel(rf, threshold="mean", prefit=True)
        trainX = selector.transform(trainX)
        if testX is not None:
            testX = selector.transform(testX)
        print(f"Selected {trainX.shape[1]} features based on feature importance.")
    
    # Scale the input data using MinMaxScaler to normalize the feature range
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)
    
    # Scale the target variable using MinMaxScaler
    target_scaler = MinMaxScaler()
    trainy_scaled = target_scaler.fit_transform(trainy.reshape(-1, 1))  # Reshape to 2D for scaler

    # Reshape trainX and testX to be 3D: (samples, timesteps, features)
    trainX = trainX_scaled.reshape((trainX.shape[0], 1, trainX.shape[1]))  # Adjusted for general feature count
    if testX is not None:
        testX = testX_scaled.reshape((testX.shape[0], 1, testX.shape[1]))  # Reshape testX if it exists
    
    model = Sequential()
    
    # GRU Layer
    model.add(GRU(512, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=False, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    
    # Dense Layers with Batch Normalization, Dropout, LeakyReLU
    model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))

    model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_rate))
    model.add(LeakyReLU(alpha=0.1))
    
    # Output Layer with ReLU activation to prevent negative predictions
    model.add(Dense(1, activation="relu"))
    
    # Compile the model
    model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
    
    # Callbacks for learning rate reduction and early stopping
    learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=1, factor=0.5, min_lr=1e-6)
    early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
    
    # Train the model
    history = model.fit(trainX, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1, 
                        callbacks=[learning_rate_reduction, early_stopping])
    
    # Predict train and test
    predicted_train = model.predict(trainX)
    predicted_test = model.predict(testX) if testX is not None else None

    # Flatten predictions
    predicted_train = predicted_train.flatten()
    if predicted_test is not None:
        predicted_test = predicted_test.flatten()
    else:
        predicted_test = np.zeros_like(predicted_train)

    # Inverse scale the predictions to get them back to original range
    predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
    if predicted_test is not None:
        predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()

    return predicted_train, predicted_test, history




#-----------------------------------------------------------DeepMap-------------------------------------------------------------------------------
def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.0001, l2_reg=0.0001, dropout_rate=0.3,feature_selection=True):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100,random_state=42)
        rf.fit(trainX,trainy)
        
        selector=SelectFromModel(rf, threshold="mean",prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} feature based on the important feature")
    
   
    
    # Scaling the inputs
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)
    
    # Reshape for CNN input (samples, features, channels)
    trainX = trainX_scaled.reshape((trainX.shape[0], trainX.shape[1], 1))
    if testX is not None:
        testX = testX_scaled.reshape((testX.shape[0], testX.shape[1], 1))
    
    model = Sequential()
    
    # Convolutional layers
    model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Dropout(dropout_rate))
    
    model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Dropout(dropout_rate))
    
    # Flatten and Dense layers
    model.add(Flatten())
    model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
    model.add(LeakyReLU(alpha=0.1))
    model.add(Dropout(dropout_rate))

    model.add(Dense(1, activation='linear'))

    # Compile the model
    model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])

    # Callbacks
    learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
    early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
    
    # Train the model
    history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1, 
                        callbacks=[learning_rate_reduction, early_stopping])
    
    predicted_train = model.predict(trainX).flatten()
    predicted_test = model.predict(testX).flatten() if testX is not None else None
    
    return predicted_train, predicted_test, history

#-------------------------------------------------------------------------Random Forest----------------------------------------------------
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100, random_state=42)
        rf.fit(trainX, trainy)
        selector=SelectFromModel(rf, threshold="mean", prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} feature based on the feature selection")
        
    
    # Log transformation of the target variable
   
    # Scaling the feature data
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)
    
    # Define and train the RandomForest model
    rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
    history=rf_model.fit(trainX_scaled, trainy)
    
    
    # Predictions
    predicted_train = rf_model.predict(trainX_scaled)
    predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
    
    return predicted_train, predicted_test,history
#------------------------------------------------------------------------------XGboost---------------------------------------------------------------
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
    if feature_selection:
        rf=RandomForestRegressor(n_estimators=100,random_state=42)
        rf.fit(trainX,trainy)
        selector=SelectFromModel(rf,threshold="mean",prefit=True)
        trainX=selector.transform(trainX)
        if testX is not None:
            testX=selector.transform(testX)
        print(f"Selected {trainX.shape[1]} features based on feature importance")
        
    
    #trainy_log = np.log1p(trainy)  # Log-transform to handle large phenotypic values
    #if testy is not None:
       # testy_log = np.log1p(testy)

    # Scale the features
    scaler = MinMaxScaler()
    trainX_scaled = scaler.fit_transform(trainX)
    if testX is not None:
        testX_scaled = scaler.transform(testX)

    # Define and train the XGBoost model
   # xgb_model = XGBRegressor(n_estimators=n_estimators, max_depth=100, random_state=42)
    #xgb_model = XGBRegressor(objective ='reg:linear', 
               #   n_estimators = 100, seed = 100) 
    xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
    history=xgb_model.fit(trainX, trainy)
    param_grid={
        "learning_rate":0.01,
        "max_depth" : 10,
         "n_estimators": 100,
         "min_child_weight": 5
        }
    

    # Predictions
    predicted_train = xgb_model.predict(trainX_scaled)
    predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
    

    return predicted_train, predicted_test,history






#----------------------------------------reading file----------------------------------------------------------------------------------------





# Helper function to read the uploaded CSV file
def read_csv_file(uploaded_file):
    if uploaded_file is not None:
        if hasattr(uploaded_file, 'data'):  # For NamedBytes
            return pd.read_csv(io.BytesIO(uploaded_file.data))
        elif hasattr(uploaded_file, 'name'):  # For NamedString
            return pd.read_csv(uploaded_file.name)
    return None


#-----------------------------------------------------------------calculate topsis score--------------------------------------------------------


def calculate_topsis_score(df):
    # Normalize the metrics
    metrics = df[['Train_MSE', 'Train_RMSE', 'Train_R2', 'Train_Corr']].dropna()  # Ensure no NaN values
    norm_metrics = metrics / np.sqrt((metrics ** 2).sum(axis=0))
    
    # Define ideal best and worst for each metric
    ideal_best = pd.Series(index=norm_metrics.columns)
    ideal_worst = pd.Series(index=norm_metrics.columns)

    # For RMSE and MSE (minimization criteria): min is best, max is worst
    for col in ['Train_MSE', 'Train_RMSE']:
        ideal_best[col] = norm_metrics[col].min()
        ideal_worst[col] = norm_metrics[col].max()

    # For R2 and Corr (maximization criteria): max is best, min is worst
    for col in ['Train_R2', 'Train_Corr']:
        ideal_best[col] = norm_metrics[col].max()
        ideal_worst[col] = norm_metrics[col].min()
    
    # Calculate Euclidean distance to ideal best and worst
    dist_to_best = np.sqrt(((norm_metrics - ideal_best) ** 2).sum(axis=1))
    dist_to_worst = np.sqrt(((norm_metrics - ideal_worst) ** 2).sum(axis=1))

    # Calculate TOPSIS score
    topsis_score = dist_to_worst / (dist_to_best + dist_to_worst)
    df['TOPSIS_Score'] = np.nan  # Initialize with NaN
    df.loc[metrics.index, 'TOPSIS_Score'] = topsis_score  # Assign TOPSIS scores
    return df

#--------------------------------------------------- Nested Cross validation---------------------------------------------------------------------------
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import mean_squared_error, r2_score
from scipy.stats import pearsonr
import numpy as np
import pandas as pd

def NestedKFoldCrossValidation(
    training_data, training_additive, testing_data, testing_additive, 
    training_dominance, testing_dominance, epochs, learning_rate, min_child_weight, 
    batch_size=64, outer_n_splits=2, output_file='cross_validation_results.csv', 
    predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True
):

    if 'phenotypes' not in training_data.columns:
        raise ValueError("Training data does not contain the 'phenotypes' column.")
    
    # Remove Sample ID columns from additive and dominance data
    training_additive = training_additive.iloc[:, 1:]
    testing_additive = testing_additive.iloc[:, 1:]
    training_dominance = training_dominance.iloc[:, 1:]
    testing_dominance = testing_dominance.iloc[:, 1:]

    # Merge training and testing data with additive and dominance components
    training_data_merged = pd.concat([training_data, training_additive, training_dominance], axis=1)
    testing_data_merged = pd.concat([testing_data, testing_additive, testing_dominance], axis=1)

    phenotypic_info = training_data['phenotypes'].values
    phenotypic_test_info = testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
    sample_ids = testing_data.iloc[:, 0].values

    training_genotypic_data_merged = training_data_merged.iloc[:, 2:].values
    testing_genotypic_data_merged = testing_data_merged.iloc[:, 2:].values

    # Feature selection
    if feature_selection:
        rf = RandomForestRegressor(n_estimators=100, random_state=65)
        rf.fit(training_genotypic_data_merged, phenotypic_info)
        selector = SelectFromModel(rf, threshold="mean", prefit=True)
        training_genotypic_data_merged = selector.transform(training_genotypic_data_merged)
        testing_genotypic_data_merged = selector.transform(testing_genotypic_data_merged)
        print(f"Selected {training_genotypic_data_merged.shape[1]} features based on importance.")

    # Standardize the genotypic data
    scaler = StandardScaler()
    training_genotypic_data_merged = scaler.fit_transform(training_genotypic_data_merged)
    testing_genotypic_data_merged = scaler.transform(testing_genotypic_data_merged)

    outer_kf = KFold(n_splits=outer_n_splits)

    results = []
    all_predicted_phenotypes = []

    def calculate_metrics(true_values, predicted_values):
        mse = mean_squared_error(true_values, predicted_values)
        rmse = np.sqrt(mse)
        r2 = r2_score(true_values, predicted_values)
        corr = pearsonr(true_values, predicted_values)[0]
        return mse, rmse, r2, corr

    models = [
        ('GRUModel', GRUModel),
        ('CNNModel', CNNModel),
        ('RFModel', RFModel),
        ('XGBoostModel', XGBoostModel)
    ]

    for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
        outer_trainX = training_genotypic_data_merged[outer_train_index]
        outer_trainy = phenotypic_info[outer_train_index]

        outer_testX = testing_genotypic_data_merged
        outer_testy = phenotypic_test_info

        for model_name, model_func in models:
            print(f"Running model: {model_name} for fold {outer_fold}")
            if model_name in ['GRUModel', 'CNNModel']:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
            elif model_name in ['RFModel']:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
            else:
                predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, learning_rate, min_child_weight)

            # Calculate metrics
            mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
            mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)

            results.append({
                'Model': model_name,
                'Fold': outer_fold,
                'Train_MSE': mse_train,
                'Train_RMSE': rmse_train,
                'Train_R2': r2_train,
                'Train_Corr': corr_train,
                'Test_MSE': mse_test,
                'Test_RMSE': rmse_test,
                'Test_R2': r2_test,
                'Test_Corr': corr_test
            })

            if predicted_test is not None:
                predicted_test_df = pd.DataFrame({
                    'Sample_ID': sample_ids,
                    'Predicted_Phenotype': predicted_test,
                    'Model': model_name
                })
                all_predicted_phenotypes.append(predicted_test_df)

    # Compile results
    results_df = pd.DataFrame(results)
    avg_results_df = results_df.groupby('Model').agg({
        'Train_MSE': 'mean',
        'Train_RMSE': 'mean',
        'Train_R2': 'mean',
        'Train_Corr': 'mean',
        'Test_MSE': 'mean',
        'Test_RMSE': 'mean',
        'Test_R2': 'mean',
        'Test_Corr': 'mean'
    }).reset_index()

    # Calculate the TOPSIS score for the average metrics (considering only MSE, RMSE, R², and Correlation)
    def calculate_topsis_score(df):
        # Normalize the data
        norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())

        # Calculate the positive and negative ideal solutions
        ideal_positive = norm_df.max(axis=0)
        ideal_negative = norm_df.min(axis=0)

        # Calculate the Euclidean distances
        dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
        dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))

        # Calculate the TOPSIS score
        topsis_score = dist_negative / (dist_positive + dist_negative)

        # Add the TOPSIS score to the dataframe
        df['TOPSIS_Score'] = topsis_score

        return df

    avg_results_df = calculate_topsis_score(avg_results_df)

    # Save the results with TOPSIS scores to the file
    avg_results_df.to_csv(output_file, index=False)

    # Save predicted phenotypes
    if all_predicted_phenotypes:
        predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
        predicted_all_df.to_csv(predicted_phenotype_file, index=False)

    return avg_results_df, predicted_all_df if all_predicted_phenotypes else None


    # Save the results to the file
    #results_df.to_csv(output_file, index=False)

    # Save predicted phenotypes
    #if all_predicted_phenotypes:
       # predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
        #predicted_all_df.to_csv(predicted_phenotype_file, index=False)

   # return results_df, predicted_all_df if all_predicted_phenotypes else None

#--------------------------------------------------------------------Gradio interface---------------------------------------------------------------

def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file, 
                         training_dominance_file, testing_dominance_file,feature_selection,learning_rate,min_child_weight):

    # Default parameters
    epochs = 1000
    batch_size = 64
    
    inner_n_splits = 2
    min_child_weight=5
    learning_rate=0.001
    #learning_rate=learning_rate
   # min_child_weight=min_child_weight

    # Load datasets
    training_data = pd.read_csv(training_file.name)
    training_additive = pd.read_csv(training_additive_file.name)
    testing_data = pd.read_csv(testing_file.name)
    testing_additive = pd.read_csv(testing_additive_file.name)
    training_dominance = pd.read_csv(training_dominance_file.name)
    testing_dominance = pd.read_csv(testing_dominance_file.name)

    # Call the cross-validation function
    results, predicted_phenotypes = NestedKFoldCrossValidation(
        training_data=training_data,
        training_additive=training_additive,
        testing_data=testing_data,
        testing_additive=testing_additive,
        training_dominance=training_dominance,
        testing_dominance=testing_dominance,
        epochs=epochs,
        batch_size=batch_size,
        #outer_n_splits= outer_n_splits,
        #outer_n_splits=outer_n_splits,
        #inner_n_splits=inner_n_splits,
        learning_rate=learning_rate,
        min_child_weight=min_child_weight,
        feature_selection=feature_selection
    )

    # Save outputs
    results_file = "cross_validation_results.csv"
    predicted_file = "predicted_phenotype.csv"
    results.to_csv(results_file, index=False)
    predicted_phenotypes.to_csv(predicted_file, index=False)

    return results_file, predicted_file

# Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")

    with gr.Row():
        training_file = gr.File(label="Upload Training Data (CSV)")
        training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
        training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")

    with gr.Row():
        testing_file = gr.File(label="Upload Testing Data (CSV)")
        testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
        testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")

    with gr.Row():
        feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)

    output1 = gr.File(label="Cross-Validation Results (CSV)")
    output2 = gr.File(label="Predicted Phenotypes (CSV)")

    submit_btn = gr.Button("Run DeepMap")
    submit_btn.click(
        run_cross_validation,
        inputs=[
            training_file, training_additive_file, testing_file, 
            testing_additive_file, training_dominance_file,testing_dominance_file, 
            feature_selection
        ],
        outputs=[output1, output2]
    )

# Launch the interface
interface.launch()