Spaces:
Sleeping
Sleeping
File size: 24,746 Bytes
5b1fe9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:47:37 2024
@author: Ashmitha
"""
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 12:25:57 2024
@author: Ashmitha
"""
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 9 15:44:40 2024
@author: Ashmitha
"""
import pandas as pd
import numpy as np
import gradio as gr
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile
#-------------------------------------Feature selection---------------------------------------------------------------------------------------------
def RandomForestFeatureSelection(trainX, trainy, num_features=60):
rf = RandomForestRegressor(n_estimators=1000, random_state=50)
rf.fit(trainX, trainy)
# Get feature importances
importances = rf.feature_importances_
# Select the top N important features
indices = np.argsort(importances)[-num_features:]
return indices
#----------------------------------------------------------GRU Model---------------------------------------------------------------------
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, Dense, BatchNormalization, Dropout, LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
def GRUModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.001, l2_reg=0.001, dropout_rate=0.2, feature_selection=True):
# Apply feature selection using Random Forest Regressor
if feature_selection:
# Use RandomForestRegressor to rank features by importance
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(trainX, trainy)
# Select features with importance greater than a threshold (e.g., mean importance)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
trainX = selector.transform(trainX)
if testX is not None:
testX = selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance.")
# Scale the input data using MinMaxScaler to normalize the feature range
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Scale the target variable using MinMaxScaler
target_scaler = MinMaxScaler()
trainy_scaled = target_scaler.fit_transform(trainy.reshape(-1, 1)) # Reshape to 2D for scaler
# Reshape trainX and testX to be 3D: (samples, timesteps, features)
trainX = trainX_scaled.reshape((trainX.shape[0], 1, trainX.shape[1])) # Adjusted for general feature count
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0], 1, testX.shape[1])) # Reshape testX if it exists
model = Sequential()
# GRU Layer
model.add(GRU(512, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=False, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
# Dense Layers with Batch Normalization, Dropout, LeakyReLU
model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
# Output Layer with ReLU activation to prevent negative predictions
model.add(Dense(1, activation="relu"))
# Compile the model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks for learning rate reduction and early stopping
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
# Train the model
history = model.fit(trainX, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
# Predict train and test
predicted_train = model.predict(trainX)
predicted_test = model.predict(testX) if testX is not None else None
# Flatten predictions
predicted_train = predicted_train.flatten()
if predicted_test is not None:
predicted_test = predicted_test.flatten()
else:
predicted_test = np.zeros_like(predicted_train)
# Inverse scale the predictions to get them back to original range
predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
if predicted_test is not None:
predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()
return predicted_train, predicted_test, history
#-----------------------------------------------------------DeepMap-------------------------------------------------------------------------------
def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.0001, l2_reg=0.0001, dropout_rate=0.3,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf, threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the important feature")
# Scaling the inputs
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Reshape for CNN input (samples, features, channels)
trainX = trainX_scaled.reshape((trainX.shape[0], trainX.shape[1], 1))
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0], testX.shape[1], 1))
model = Sequential()
# Convolutional layers
model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
# Flatten and Dense layers
model.add(Flatten())
model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(LeakyReLU(alpha=0.1))
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='linear'))
# Compile the model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
# Train the model
history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
predicted_train = model.predict(trainX).flatten()
predicted_test = model.predict(testX).flatten() if testX is not None else None
return predicted_train, predicted_test, history
#-------------------------------------------------------------------------Random Forest----------------------------------------------------
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(trainX, trainy)
selector=SelectFromModel(rf, threshold="mean", prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the feature selection")
# Log transformation of the target variable
# Scaling the feature data
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Define and train the RandomForest model
rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
history=rf_model.fit(trainX_scaled, trainy)
# Predictions
predicted_train = rf_model.predict(trainX_scaled)
predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#------------------------------------------------------------------------------XGboost---------------------------------------------------------------
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf,threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance")
#trainy_log = np.log1p(trainy) # Log-transform to handle large phenotypic values
#if testy is not None:
# testy_log = np.log1p(testy)
# Scale the features
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Define and train the XGBoost model
# xgb_model = XGBRegressor(n_estimators=n_estimators, max_depth=100, random_state=42)
#xgb_model = XGBRegressor(objective ='reg:linear',
# n_estimators = 100, seed = 100)
xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
history=xgb_model.fit(trainX, trainy)
param_grid={
"learning_rate":0.01,
"max_depth" : 10,
"n_estimators": 100,
"min_child_weight": 5
}
# Predictions
predicted_train = xgb_model.predict(trainX_scaled)
predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#----------------------------------------reading file----------------------------------------------------------------------------------------
# Helper function to read the uploaded CSV file
def read_csv_file(uploaded_file):
if uploaded_file is not None:
if hasattr(uploaded_file, 'data'): # For NamedBytes
return pd.read_csv(io.BytesIO(uploaded_file.data))
elif hasattr(uploaded_file, 'name'): # For NamedString
return pd.read_csv(uploaded_file.name)
return None
#-----------------------------------------------------------------calculate topsis score--------------------------------------------------------
def calculate_topsis_score(df):
# Normalize the metrics
metrics = df[['Train_MSE', 'Train_RMSE', 'Train_R2', 'Train_Corr']].dropna() # Ensure no NaN values
norm_metrics = metrics / np.sqrt((metrics ** 2).sum(axis=0))
# Define ideal best and worst for each metric
ideal_best = pd.Series(index=norm_metrics.columns)
ideal_worst = pd.Series(index=norm_metrics.columns)
# For RMSE and MSE (minimization criteria): min is best, max is worst
for col in ['Train_MSE', 'Train_RMSE']:
ideal_best[col] = norm_metrics[col].min()
ideal_worst[col] = norm_metrics[col].max()
# For R2 and Corr (maximization criteria): max is best, min is worst
for col in ['Train_R2', 'Train_Corr']:
ideal_best[col] = norm_metrics[col].max()
ideal_worst[col] = norm_metrics[col].min()
# Calculate Euclidean distance to ideal best and worst
dist_to_best = np.sqrt(((norm_metrics - ideal_best) ** 2).sum(axis=1))
dist_to_worst = np.sqrt(((norm_metrics - ideal_worst) ** 2).sum(axis=1))
# Calculate TOPSIS score
topsis_score = dist_to_worst / (dist_to_best + dist_to_worst)
df['TOPSIS_Score'] = np.nan # Initialize with NaN
df.loc[metrics.index, 'TOPSIS_Score'] = topsis_score # Assign TOPSIS scores
return df
#--------------------------------------------------- Nested Cross validation---------------------------------------------------------------------------
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import mean_squared_error, r2_score
from scipy.stats import pearsonr
import numpy as np
import pandas as pd
def NestedKFoldCrossValidation(
training_data, training_additive, testing_data, testing_additive,
training_dominance, testing_dominance, epochs, learning_rate, min_child_weight,
batch_size=64, outer_n_splits=2, output_file='cross_validation_results.csv',
predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True
):
if 'phenotypes' not in training_data.columns:
raise ValueError("Training data does not contain the 'phenotypes' column.")
# Remove Sample ID columns from additive and dominance data
training_additive = training_additive.iloc[:, 1:]
testing_additive = testing_additive.iloc[:, 1:]
training_dominance = training_dominance.iloc[:, 1:]
testing_dominance = testing_dominance.iloc[:, 1:]
# Merge training and testing data with additive and dominance components
training_data_merged = pd.concat([training_data, training_additive, training_dominance], axis=1)
testing_data_merged = pd.concat([testing_data, testing_additive, testing_dominance], axis=1)
phenotypic_info = training_data['phenotypes'].values
phenotypic_test_info = testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
sample_ids = testing_data.iloc[:, 0].values
training_genotypic_data_merged = training_data_merged.iloc[:, 2:].values
testing_genotypic_data_merged = testing_data_merged.iloc[:, 2:].values
# Feature selection
if feature_selection:
rf = RandomForestRegressor(n_estimators=100, random_state=65)
rf.fit(training_genotypic_data_merged, phenotypic_info)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
training_genotypic_data_merged = selector.transform(training_genotypic_data_merged)
testing_genotypic_data_merged = selector.transform(testing_genotypic_data_merged)
print(f"Selected {training_genotypic_data_merged.shape[1]} features based on importance.")
# Standardize the genotypic data
scaler = StandardScaler()
training_genotypic_data_merged = scaler.fit_transform(training_genotypic_data_merged)
testing_genotypic_data_merged = scaler.transform(testing_genotypic_data_merged)
outer_kf = KFold(n_splits=outer_n_splits)
results = []
all_predicted_phenotypes = []
def calculate_metrics(true_values, predicted_values):
mse = mean_squared_error(true_values, predicted_values)
rmse = np.sqrt(mse)
r2 = r2_score(true_values, predicted_values)
corr = pearsonr(true_values, predicted_values)[0]
return mse, rmse, r2, corr
models = [
('GRUModel', GRUModel),
('CNNModel', CNNModel),
('RFModel', RFModel),
('XGBoostModel', XGBoostModel)
]
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
outer_trainX = training_genotypic_data_merged[outer_train_index]
outer_trainy = phenotypic_info[outer_train_index]
outer_testX = testing_genotypic_data_merged
outer_testy = phenotypic_test_info
for model_name, model_func in models:
print(f"Running model: {model_name} for fold {outer_fold}")
if model_name in ['GRUModel', 'CNNModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
elif model_name in ['RFModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
else:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, learning_rate, min_child_weight)
# Calculate metrics
mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)
results.append({
'Model': model_name,
'Fold': outer_fold,
'Train_MSE': mse_train,
'Train_RMSE': rmse_train,
'Train_R2': r2_train,
'Train_Corr': corr_train,
'Test_MSE': mse_test,
'Test_RMSE': rmse_test,
'Test_R2': r2_test,
'Test_Corr': corr_test
})
if predicted_test is not None:
predicted_test_df = pd.DataFrame({
'Sample_ID': sample_ids,
'Predicted_Phenotype': predicted_test,
'Model': model_name
})
all_predicted_phenotypes.append(predicted_test_df)
# Compile results
results_df = pd.DataFrame(results)
avg_results_df = results_df.groupby('Model').agg({
'Train_MSE': 'mean',
'Train_RMSE': 'mean',
'Train_R2': 'mean',
'Train_Corr': 'mean',
'Test_MSE': 'mean',
'Test_RMSE': 'mean',
'Test_R2': 'mean',
'Test_Corr': 'mean'
}).reset_index()
# Calculate the TOPSIS score for the average metrics (considering only MSE, RMSE, R², and Correlation)
def calculate_topsis_score(df):
# Normalize the data
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
# Calculate the positive and negative ideal solutions
ideal_positive = norm_df.max(axis=0)
ideal_negative = norm_df.min(axis=0)
# Calculate the Euclidean distances
dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))
# Calculate the TOPSIS score
topsis_score = dist_negative / (dist_positive + dist_negative)
# Add the TOPSIS score to the dataframe
df['TOPSIS_Score'] = topsis_score
return df
avg_results_df = calculate_topsis_score(avg_results_df)
# Save the results with TOPSIS scores to the file
avg_results_df.to_csv(output_file, index=False)
# Save predicted phenotypes
if all_predicted_phenotypes:
predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
predicted_all_df.to_csv(predicted_phenotype_file, index=False)
return avg_results_df, predicted_all_df if all_predicted_phenotypes else None
# Save the results to the file
#results_df.to_csv(output_file, index=False)
# Save predicted phenotypes
#if all_predicted_phenotypes:
# predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
#predicted_all_df.to_csv(predicted_phenotype_file, index=False)
# return results_df, predicted_all_df if all_predicted_phenotypes else None
#--------------------------------------------------------------------Gradio interface---------------------------------------------------------------
def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file,
training_dominance_file, testing_dominance_file,feature_selection,learning_rate,min_child_weight):
# Default parameters
epochs = 1000
batch_size = 64
inner_n_splits = 2
min_child_weight=5
learning_rate=0.001
#learning_rate=learning_rate
# min_child_weight=min_child_weight
# Load datasets
training_data = pd.read_csv(training_file.name)
training_additive = pd.read_csv(training_additive_file.name)
testing_data = pd.read_csv(testing_file.name)
testing_additive = pd.read_csv(testing_additive_file.name)
training_dominance = pd.read_csv(training_dominance_file.name)
testing_dominance = pd.read_csv(testing_dominance_file.name)
# Call the cross-validation function
results, predicted_phenotypes = NestedKFoldCrossValidation(
training_data=training_data,
training_additive=training_additive,
testing_data=testing_data,
testing_additive=testing_additive,
training_dominance=training_dominance,
testing_dominance=testing_dominance,
epochs=epochs,
batch_size=batch_size,
#outer_n_splits= outer_n_splits,
#outer_n_splits=outer_n_splits,
#inner_n_splits=inner_n_splits,
learning_rate=learning_rate,
min_child_weight=min_child_weight,
feature_selection=feature_selection
)
# Save outputs
results_file = "cross_validation_results.csv"
predicted_file = "predicted_phenotype.csv"
results.to_csv(results_file, index=False)
predicted_phenotypes.to_csv(predicted_file, index=False)
return results_file, predicted_file
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")
with gr.Row():
training_file = gr.File(label="Upload Training Data (CSV)")
training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")
with gr.Row():
testing_file = gr.File(label="Upload Testing Data (CSV)")
testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")
with gr.Row():
feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)
output1 = gr.File(label="Cross-Validation Results (CSV)")
output2 = gr.File(label="Predicted Phenotypes (CSV)")
submit_btn = gr.Button("Run DeepMap")
submit_btn.click(
run_cross_validation,
inputs=[
training_file, training_additive_file, testing_file,
testing_additive_file, training_dominance_file,testing_dominance_file,
feature_selection
],
outputs=[output1, output2]
)
# Launch the interface
interface.launch()
|