File size: 13,604 Bytes
1b36021
dd14238
b705daa
 
 
 
 
 
 
dd14238
 
 
 
b705daa
1b36021
 
b705daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd14238
b705daa
 
 
 
 
dd14238
b705daa
 
 
 
dd14238
b705daa
 
 
 
 
d94d7e7
b705daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd14238
b705daa
 
dd14238
b705daa
 
 
 
 
 
 
 
1b36021
b705daa
 
 
 
 
 
 
dd14238
b705daa
 
 
dd14238
b705daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef6f53
b705daa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import streamlit as st
import numpy as np
import google.generativeai as genai
import uuid
import datetime
import json
from dotenv import load_dotenv
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_groq import ChatGroq
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# Load environment variables
load_dotenv()

# Custom CSS for a modern chat interface
def local_css():
    st.markdown("""
    <style>
    /* Main app styling */
    .main {
        background-color: #f9f9fc;
        font-family: 'Inter', sans-serif;
    }
    
    /* Chat container styling */
    .chat-container {
        max-width: 900px;
        margin: 0 auto;
        padding: 1rem;
        border-radius: 12px;
        background-color: white;
        box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05);
    }
    
    /* Message styling */
    .stChatMessage {
        padding: 0.5rem 0;
    }
    
    /* User message styling */
    [data-testid="stChatMessageContent"] {
        border-radius: 18px;
        padding: 0.8rem 1rem;
        line-height: 1.5;
    }
    
    /* User avatar */
    .stChatMessageAvatar {
        background-color: #1f75fe !important;
    }
    
    /* Assistant avatar */
    [data-testid="stChatMessageAvatar"][data-testid*="assistant"] {
        background-color: #10a37f !important;
    }
    
    /* Sidebar styling */
    [data-testid="stSidebar"] {
        background-color: #ffffff;
        border-right: 1px solid #e6e6e6;
        padding: 1rem;
    }
    
    /* Chat history item styling */
    .chat-history-item {
        padding: 10px 15px;
        margin: 5px 0;
        border-radius: 8px;
        cursor: pointer;
        transition: background-color 0.2s;
        overflow: hidden;
        text-overflow: ellipsis;
        white-space: nowrap;
    }
    
    .chat-history-item:hover {
        background-color: #f0f0f5;
    }
    
    .chat-history-active {
        background-color: #e6f0ff;
        border-left: 3px solid #1f75fe;
    }
    
    /* Input area styling */
    .stTextInput > div > div > input {
        border-radius: 20px;
        padding: 10px 15px;
        border: 1px solid #e0e0e0;
        background-color: #f9f9fc;
    }
    
    /* Button styling */
    .stButton > button {
        border-radius: 20px;
        padding: 0.3rem 1rem;
        background-color: #1f75fe;
        color: white;
        border: none;
        transition: all 0.2s;
    }
    
    .stButton > button:hover {
        background-color: #0056b3;
        transform: translateY(-2px);
    }
    
    /* Custom header */
    .custom-header {
        display: flex;
        align-items: center;
        margin-bottom: 1rem;
    }
    
    .custom-header h1 {
        margin: 0;
        font-size: 1.8rem;
        color: #333;
    }
    
    /* Typing indicator */
    .typing-indicator {
        display: flex;
        padding: 10px 15px;
        background-color: #f0f0f5;
        border-radius: 18px;
        width: fit-content;
    }
    
    .typing-indicator span {
        height: 8px;
        width: 8px;
        margin: 0 1px;
        background-color: #a0a0a0;
        border-radius: 50%;
        display: inline-block;
        animation: typing 1.4s infinite ease-in-out both;
    }
    
    .typing-indicator span:nth-child(1) {
        animation-delay: 0s;
    }
    
    .typing-indicator span:nth-child(2) {
        animation-delay: 0.2s;
    }
    
    .typing-indicator span:nth-child(3) {
        animation-delay: 0.4s;
    }
    
    @keyframes typing {
        0% { transform: scale(1); }
        50% { transform: scale(1.5); }
        100% { transform: scale(1); }
    }
    </style>
    """, unsafe_allow_html=True)

# Initialize session state variables
def init_session_state():
    if 'messages' not in st.session_state:
        st.session_state.messages = []
    if 'chat_sessions' not in st.session_state:
        st.session_state.chat_sessions = {}
    if 'current_session_id' not in st.session_state:
        st.session_state.current_session_id = str(uuid.uuid4())
    if 'session_name' not in st.session_state:
        st.session_state.session_name = f"Chat {datetime.datetime.now().strftime('%b %d, %H:%M')}"

# Save and load chat sessions
def save_chat_session():
    if st.session_state.current_session_id:
        st.session_state.chat_sessions[st.session_state.current_session_id] = {
            "name": st.session_state.session_name,
            "messages": st.session_state.messages,
            "timestamp": datetime.datetime.now().isoformat()
        }

def load_chat_session(session_id):
    if session_id in st.session_state.chat_sessions:
        st.session_state.current_session_id = session_id
        st.session_state.messages = st.session_state.chat_sessions[session_id]["messages"]
        st.session_state.session_name = st.session_state.chat_sessions[session_id]["name"]

def create_new_chat():
    st.session_state.current_session_id = str(uuid.uuid4())
    st.session_state.messages = []
    st.session_state.session_name = f"Chat {datetime.datetime.now().strftime('%b %d, %H:%M')}"

# Configure Gemini and Groq models
def setup_models(groq_api_key, gemini_api_key):
    genai.configure(api_key=gemini_api_key)
    
    llm = ChatGroq(
        model="llama-3.3-70b-versatile",
        groq_api_key=groq_api_key
    )
    
    direct_prompt = PromptTemplate(
        input_variables=["question"],
        template="""
        Answer the question in detailed form.
        
        Question: {question}
        Answer:
        """
    )
    direct_chain = LLMChain(llm=llm, prompt=direct_prompt)
    
    search_prompt = PromptTemplate(
        input_variables=["web_results", "question"],
        template="""
        Use these web search results to give a comprehensive answer:
        
        Search Results:
        {web_results}
        
        Question: {question}
        Answer:
        """
    )
    search_chain = LLMChain(llm=llm, prompt=search_prompt)
    
    return direct_chain, search_chain

def get_gemini_model(name="gemini-1.5-pro"):
    return genai.GenerativeModel(name)

def gen_content(model, prompt, temperature=0.4, max_tokens=512):
    cfg = {"temperature": temperature, "top_p":1, "top_k":50, "max_output_tokens": max_tokens}
    safety = [{"category":c, "threshold":"BLOCK_NONE"} for c in [
        "HARM_CATEGORY_HARASSMENT", "HARM_CATEGORY_HATE_SPEECH",
        "HARM_CATEGORY_SEXUALLY_EXPLICIT", "HARM_CATEGORY_DANGEROUS_CONTENT"
    ]]
    res = model.generate_content(prompt, generation_config=cfg, safety_settings=safety)
    return res.candidates[0].content.parts[0].text if res.candidates else ""

def decide_search(query: str):
    model = get_gemini_model()
    decision_prompt = f"Decide if this requires web search. If yes, reply '<SEARCH> keywords'. Otherwise 'NO_SEARCH'.\nQuery: {query}"
    response = gen_content(model, decision_prompt, max_tokens=32)
    if "<SEARCH>" in response:
        return True, response.split("<SEARCH>")[1].strip()
    return False, None

@st.cache_data
def perform_search(keywords: str) -> str:
    return DuckDuckGoSearchRun().run(keywords)

# Main application
def main():
    # Page configuration
    st.set_page_config(
        page_title="General Knowledge Assistant", 
        page_icon="🧭", 
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    # Apply custom CSS
    local_css()
    
    # Initialize session state
    init_session_state()
    
    # Sidebar: API keys and chat history
    with st.sidebar:
        st.markdown("<h2 style='text-align: center;'>🧭 Knowledge Assistant</h2>", unsafe_allow_html=True)
        
        # API Key inputs
        st.subheader("πŸ”‘ API Keys")
        groq_api_key = os.environ.get("GROQ_API_KEY") or st.text_input("Groq API Key", type="password")
        gemini_api_key = os.environ.get("GEMINI_API_KEY") or st.text_input("Gemini API Key", type="password")
        
        if not groq_api_key or not gemini_api_key:
            st.warning("Please provide both API keys to proceed.")
            st.stop()
        
        # Chat history management
        st.subheader("πŸ’¬ Chat History")
        
        # New chat button
        if st.button("βž• New Chat", key="new_chat"):
            create_new_chat()
        
        # Current chat name editor
        new_name = st.text_input("Chat Name", value=st.session_state.session_name)
        if new_name != st.session_state.session_name:
            st.session_state.session_name = new_name
            save_chat_session()
        
        # Display chat history
        st.markdown("#### Previous Chats")
        
        # Sort sessions by timestamp (newest first)
        sorted_sessions = sorted(
            st.session_state.chat_sessions.items(),
            key=lambda x: x[1].get("timestamp", ""),
            reverse=True
        )
        
        for session_id, session in sorted_sessions:
            # Display first message or default text
            preview = "New conversation"
            if session["messages"] and len(session["messages"]) > 0:
                first_msg = session["messages"][0]
                if isinstance(first_msg, dict) and "content" in first_msg:
                    preview = first_msg["content"]
                elif isinstance(first_msg, (list, tuple)) and len(first_msg) > 1:
                    preview = first_msg[1]  # Assuming content is at index 1
                
                if len(preview) > 30:
                    preview = preview[:30] + "..."
            
            # Highlight current session
            is_current = session_id == st.session_state.current_session_id
            style = "chat-history-item chat-history-active" if is_current else "chat-history-item"
            
            col1, col2 = st.columns([0.8, 0.2])
            with col1:
                if st.button(session["name"], key=f"load_session_{session_id}"):
                    load_chat_session(session_id)
                    st.rerun()
            
            with col2:
                if st.button("πŸ—‘οΈ", key=f"delete_{session_id}", help="Delete this chat"):
                    if session_id in st.session_state.chat_sessions:
                        del st.session_state.chat_sessions[session_id]
                        if session_id == st.session_state.current_session_id:
                            create_new_chat()
                        st.rerun()
    
    # Main chat interface
    direct_chain, search_chain = setup_models(groq_api_key, gemini_api_key)
    
    # Custom header with logo and title
    st.markdown("""
    <div class="custom-header">
        <h1>🧭 General Knowledge Assistant</h1>
    </div>
    """, unsafe_allow_html=True)
    
    # Chat container
    chat_container = st.container()
    
    # Chat input area (placed before displaying messages for better UX)
    user_input = st.chat_input("Ask me anything...")
    
    # Process user input
    if user_input:
        # Add user message to chat
        st.session_state.messages.append({"role": "user", "content": user_input})
        
        # Save current state
        save_chat_session()
        
        # Show typing indicator
        with chat_container:
            typing_placeholder = st.empty()
            typing_placeholder.markdown("""
            <div class="typing-indicator">
                <span></span>
                <span></span>
                <span></span>
            </div>
            """, unsafe_allow_html=True)
        
        # Process the query
        try:
            # Determine need for search
            needs_search, terms = decide_search(user_input)
            
            if needs_search:
                web_results = perform_search(terms)
                answer = search_chain.run({"web_results": web_results, "question": user_input})
            else:
                answer = direct_chain.run({"question": user_input})
            
            # Add assistant response to chat
            st.session_state.messages.append({"role": "assistant", "content": answer})
            
            # Save updated chat
            save_chat_session()
            
        except Exception as e:
            error_message = f"Sorry, I encountered an error: {str(e)}"
            st.session_state.messages.append({"role": "assistant", "content": error_message})
            save_chat_session()
        
        # Remove typing indicator
        typing_placeholder.empty()
        
        # Force a rerun to update the UI
        st.rerun()
    
    # Display chat messages
    with chat_container:
        if not st.session_state.messages:
            # Show welcome message if no messages
            st.markdown("""
            <div style="text-align: center; padding: 50px 20px;">
                <h3>πŸ‘‹ Welcome to the General Knowledge Assistant!</h3>
                <p>Ask me anything about general knowledge, facts, or concepts.</p>
                <p>I can search the web when needed to provide you with up-to-date information.</p>
            </div>
            """, unsafe_allow_html=True)
        else:
            # Display all messages
            for msg in st.session_state.messages:
                # Ensure we're handling the message correctly based on its type
                if isinstance(msg, dict) and "role" in msg and "content" in msg:
                    with st.chat_message(msg["role"]):
                        st.write(msg["content"])
                else:
                    st.error(f"Invalid message format: {msg}")

if __name__ == "__main__":
    main()