File size: 21,655 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_TENSOR_H_
#define DLIB_DNn_TENSOR_H_

#include "tensor_abstract.h"
#include <cstring>
#include "../matrix.h"
#include "cudnn_dlibapi.h"
#include "gpu_data.h"
#include "../byte_orderer.h"
#include <memory>
#include "../any.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class tensor;
    namespace cuda
    {
        void set_tensor (
            tensor& t,
            float value
        );

        void scale_tensor (
            tensor& t,
            float value
        );
    }

// ----------------------------------------------------------------------------------------

    class tensor
    {
    public:

        tensor (
        ) : 
            m_n(0), m_k(0), m_nr(0), m_nc(0), m_size(0)
        {
        }

        virtual ~tensor() {}

        long long num_samples() const { return m_n; }
        long long k() const { return m_k; }
        long long nr() const { return m_nr; }
        long long nc() const { return m_nc; }
        size_t size() const { return m_size; }

        typedef float* iterator;
        typedef const float* const_iterator;
        iterator       begin()       { return host(); }
        const_iterator begin() const { return host(); }
        iterator       end()         { return host()+size(); }
        const_iterator end() const   { return host()+size(); }

        void async_copy_to_device() const
        {
            data().async_copy_to_device();
        }

        virtual const float* host() const = 0;
        virtual float*       host() = 0; 
        virtual float*       host_write_only() = 0;
        virtual const float* device() const = 0;
        virtual float*       device() = 0;
        virtual float*       device_write_only() = 0;

        virtual const any&   annotation() const = 0;
        virtual any&         annotation() = 0;

        int device_id() const { return data().device_id(); }

        tensor& operator= (float val)
        {
#ifdef DLIB_USE_CUDA
            // If you are using CUDA then presumably you will be mostly using tensors on
            // the GPU.  So unless you seem to be actively working with the host side's
            // data then we do this initialization on the device side since this avoids a
            // host to device transfer that would likely immediately follow.
            if (data().device_ready())
            {
                cuda::set_tensor(*this, val);
                return *this;
            }
#endif
            auto d = host_write_only();
            for (size_t i = 0; i < size(); ++i)
                d[i] = val;

            return *this;
        }

        tensor& operator*= (float val)
        {
#ifdef DLIB_USE_CUDA
            cuda::scale_tensor(*this, val);
            return *this;
#else
            for (auto& d : *this)
                d *= val;

            return *this;
#endif
        }
        
        tensor& operator/= (float val)
        {
            *this *= 1.0/val;
            return *this;
        }

        template <typename EXP>
        tensor& operator= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc());
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");

            set_ptrm(host_write_only(), m_n, m_nr*m_nc*m_k) = item;
            return *this;
        }

        template <typename EXP>
        tensor& operator+= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc());
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(host(), m_n, m_nr*m_nc*m_k) += item;
            return *this;
        }

        template <typename EXP>
        tensor& operator-= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc());
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(host(), m_n, m_nr*m_nc*m_k) -= item;
            return *this;
        }

        template <typename EXP>
        void set_sample (
            unsigned long long idx,
            const matrix_exp<EXP>& item
        )
        {
            DLIB_CASSERT(idx < (unsigned long long)num_samples());
            DLIB_CASSERT(item.size() == nr()*nc()*k());
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(host()+idx*item.size(), item.nr(), item.nc()) = item;
        }


        template <typename EXP>
        void add_to_sample (
            unsigned long long idx,
            const matrix_exp<EXP>& item
        )
        {
            DLIB_CASSERT(idx < (unsigned long long)num_samples());
            DLIB_CASSERT(item.size() == nr()*nc()*k());
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(host()+idx*item.size(), item.nr(), item.nc()) += item;
        }


#ifdef DLIB_USE_CUDA
        virtual const cuda::tensor_descriptor& get_cudnn_tensor_descriptor (
        ) const = 0; 
#endif

        friend void memcpy (
            tensor& dest, 
            const tensor& src
        )
        {
            DLIB_CASSERT(dest.size() == src.size());
            memcpy(dest.data(), dest.get_alias_offset(),  
                   src.data(),  src.get_alias_offset(), 
                   src.size());
        }


    protected:

        friend class alias_tensor;

        virtual gpu_data& data() = 0;
        virtual const gpu_data& data() const = 0;
        virtual size_t get_alias_offset() const { return 0; } // needed by alias_tensor.

        long long m_n;
        long long m_k;
        long long m_nr;
        long long m_nc;
        long long m_size; // always equal to m_n*m_k*m_nr*m_nc
    };

// ----------------------------------------------------------------------------------------

    inline bool is_vector (
        const tensor& t
    )
    {
        return t.size() == (size_t)t.num_samples() ||
               t.size() == (size_t)t.k() ||
               t.size() == (size_t)t.nr() ||
               t.size() == (size_t)t.nc();
    }

// ----------------------------------------------------------------------------------------

    inline const matrix_op<op_pointer_to_mat<float> > mat (
        const tensor& t,
        long long nr,
        long long nc
    )
    {
        DLIB_ASSERT(nr >= 0 && nc >= 0 , 
                    "\tconst matrix_exp mat(tensor, nr, nc)"
                    << "\n\t nr and nc must be >= 0"
                    << "\n\t nr: " << nr
                    << "\n\t nc: " << nc
        );
        DLIB_ASSERT(nr*nc == (long long)t.size() , 
                    "\tconst matrix_exp mat(tensor, nr, nc)"
                    << "\n\t The sizes don't match up."
                    << "\n\t nr*nc:    " << nr*nc
                    << "\n\t t.size(): " << t.size()
        );
        typedef op_pointer_to_mat<float> op;
        return matrix_op<op>(op(t.host(),nr,nc));
    }

    inline const matrix_op<op_pointer_to_mat<float> > mat (
        const tensor& t
    )
    {
        if (t.size() != 0)
            return mat(t, t.num_samples(), t.size()/t.num_samples());
        else
            return mat((float*)0,0,0);
    }

    inline const matrix_op<op_pointer_to_mat<float> > image_plane (
        const tensor& t,
        long long sample = 0,
        long long k = 0
    )
    {
        DLIB_ASSERT(0 <= sample && sample < t.num_samples() &&
                    0 <= k && k < t.k() &&
                    t.size() != 0, 
                    "\tconst matrix_exp image_plane(tensor,sample,k)"
                    << "\n\t Invalid arguments were given to this function."
                    << "\n\t sample: " << sample
                    << "\n\t k:      " << k 
                    << "\n\t t.num_samples(): " << t.num_samples() 
                    << "\n\t t.k():           " << t.k() 
                    << "\n\t t.size():        " << t.size() 
        );


        typedef op_pointer_to_mat<float> op;
        return matrix_op<op>(op(t.host() + ((sample*t.k() + k)*t.nr())*t.nc(), 
                                t.nr(), 
                                t.nc()));
    }

// ----------------------------------------------------------------------------------------

    inline bool have_same_dimensions (
        const tensor& a,
        const tensor& b
    )
    {
        return a.num_samples() == b.num_samples() &&
               a.k()  == b.k() &&
               a.nr() == b.nr() &&
               a.nc() == b.nc();
    }

// ----------------------------------------------------------------------------------------

    class resizable_tensor : public tensor
    {
    public:
        resizable_tensor(
        )
        {}

        template <typename EXP>
        resizable_tensor(
            const matrix_exp<EXP>& item
        )
        {
            set_size(item.nr(), item.nc());
            *this = item;
        }

        explicit resizable_tensor(
            long long n_, long long k_ = 1, long long nr_ = 1, long long nc_ = 1
        ) 
        {
            DLIB_ASSERT( n_ >= 0 && k_ >= 0 && nr_ >= 0 && nc_ >= 0);

            set_size(n_,k_,nr_,nc_);
        }

        resizable_tensor(const resizable_tensor& item) : _annotation(item.annotation()) 
        {
            copy_size(item);
            memcpy(*this, item);
        }
        resizable_tensor(const tensor& item) : _annotation(item.annotation()) 
        {
            copy_size(item);
            memcpy(*this, item);
        }

        resizable_tensor(resizable_tensor&& item) { swap(item); }
        resizable_tensor& operator=(resizable_tensor&& item) { swap(item); return *this; }

        virtual const float* host() const { return data_instance.host(); }
        virtual float*       host()       { return data_instance.host(); }
        virtual float*       host_write_only() { return data_instance.host_write_only(); }
        virtual const float* device() const { return data_instance.device(); }
        virtual float*       device()       { return data_instance.device(); }
        virtual float*       device_write_only() { return data_instance.device_write_only(); }

        virtual const any&   annotation() const { return _annotation; }
        virtual any&         annotation() { return _annotation; }

        void clear(
        )
        {
            set_size(0,0,0,0);
            _annotation.clear();
            // free underlying memory
            data_instance.set_size(0);
        }

        void copy_size (
            const tensor& item
        )
        {
            set_size(item.num_samples(), item.k(), item.nr(), item.nc());
        }

        resizable_tensor& operator= (float val)
        {
            tensor::operator=(val);
            return *this;
        }

        template <typename EXP>
        resizable_tensor& operator= (
            const matrix_exp<EXP>& item
        )
        {
            if (!(num_samples() == item.nr() && k()*nr()*nc() == item.nc()))
                set_size(item.nr(), item.nc());
            tensor::operator=(item);
            return *this;
        }

        void set_size(
            long long n_, long long k_ = 1, long long nr_ = 1, long long nc_ = 1
        )
        {
            DLIB_ASSERT( n_ >= 0 && k_ >= 0 && nr_ >= 0 && nc_ >= 0);

            m_n = n_;
            m_k = k_;
            m_nr = nr_;
            m_nc = nc_;
            m_size = n_*k_*nr_*nc_;
            if ((long long)data_instance.size() < m_size)
                data_instance.set_size(m_size);
#ifdef DLIB_USE_CUDA
            cudnn_descriptor.set_size(m_n,m_k,m_nr,m_nc);
#endif
        }


        resizable_tensor& operator= (const resizable_tensor& item) 
        {
            resizable_tensor temp(item);
            temp.swap(*this);
            return *this;
        }

        resizable_tensor& operator= (const tensor& item) 
        {
            resizable_tensor temp(item);
            temp.swap(*this);
            return *this;
        }


        void swap(resizable_tensor& item)
        {
            std::swap(m_n,    item.m_n);
            std::swap(m_k,    item.m_k);
            std::swap(m_nr,   item.m_nr);
            std::swap(m_nc,   item.m_nc);
            std::swap(m_size, item.m_size);
            std::swap(data_instance, item.data_instance);
            std::swap(_annotation, item._annotation);
#ifdef DLIB_USE_CUDA
            std::swap(cudnn_descriptor, item.cudnn_descriptor);
#endif
        }

#ifdef DLIB_USE_CUDA
        virtual const cuda::tensor_descriptor& get_cudnn_tensor_descriptor (
        ) const { return cudnn_descriptor; }
#endif

    private:

#ifdef DLIB_USE_CUDA
        cuda::tensor_descriptor cudnn_descriptor;
#endif 

        gpu_data data_instance;
        any _annotation;
        virtual gpu_data& data() { return data_instance; }
        virtual const gpu_data& data() const { return data_instance; }
    };

    inline void serialize(const tensor& item, std::ostream& out)
    {
        int version = 2;
        serialize(version, out);
        serialize(item.num_samples(), out);
        serialize(item.k(), out);
        serialize(item.nr(), out);
        serialize(item.nc(), out);
        byte_orderer bo;
        auto sbuf = out.rdbuf();
        for (auto d : item)
        {
            // Write out our data as 4byte little endian IEEE floats rather than using
            // dlib's default float serialization.  We do this because it will result in
            // more compact outputs.  It's slightly less portable but it seems doubtful
            // that any CUDA enabled platform isn't going to use IEEE floats.  But if one
            // does we can just update the serialization code here to handle it if such a
            // platform is encountered.
            bo.host_to_little(d);
            static_assert(sizeof(d)==4, "This serialization code assumes we are writing 4 byte floats");
            sbuf->sputn((char*)&d, sizeof(d));
        }
    }

    inline void deserialize(resizable_tensor& item, std::istream& in)
    {
        int version;
        deserialize(version, in);
        if (version != 2)
            throw serialization_error("Unexpected version found while deserializing dlib::resizable_tensor.");

        long long num_samples=0, k=0, nr=0, nc=0;
        deserialize(num_samples, in);
        deserialize(k, in);
        deserialize(nr, in);
        deserialize(nc, in);
        item.set_size(num_samples, k, nr, nc);
        byte_orderer bo;
        auto sbuf = in.rdbuf();
        for (auto& d : item)
        {
            static_assert(sizeof(d)==4, "This serialization code assumes we are writing 4 byte floats");
            if (sbuf->sgetn((char*)&d,sizeof(d)) != sizeof(d))
            {
                in.setstate(std::ios::badbit);
                throw serialization_error("Error reading data while deserializing dlib::resizable_tensor.");
            }
            bo.little_to_host(d);
        }
    }

// ----------------------------------------------------------------------------------------

    inline double dot(
        const tensor& a,
        const tensor& b
    )
    {
        DLIB_CASSERT(a.size() == b.size());
        const float* da = a.host();
        const float* db = b.host();
        double sum = 0;
        for (size_t i = 0; i < a.size(); ++i)
            sum += da[i]*db[i];
        return sum;
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    class alias_tensor_instance : public tensor
    {
        alias_tensor_instance(
        ) : data_instance(0), _annotation(0), data_offset(0) {}

    public:
        friend class alias_tensor;
        friend class alias_tensor_const_instance;

        alias_tensor_instance& operator= (float val)
        {
            tensor::operator=(val);
            return *this;
        }

        template <typename EXP>
        alias_tensor_instance& operator= (const matrix_exp<EXP>& item)
        {
            tensor::operator=(item);
            return *this;
        }

        virtual const float* host() const { return data_instance->host()+data_offset; }
        virtual float*       host()       { return data_instance->host()+data_offset; }
        virtual float*       host_write_only()    { return data_instance->host()+data_offset; }
        virtual const float* device() const { return data_instance->device()+data_offset; }
        virtual float*       device()       { return data_instance->device()+data_offset; }
        virtual float*       device_write_only()  { return data_instance->device()+data_offset; }

        virtual const any&   annotation() const { return *_annotation; }
        virtual any&         annotation() { return *_annotation; }

#ifdef DLIB_USE_CUDA
        virtual const cuda::tensor_descriptor& get_cudnn_tensor_descriptor (
        ) const { return *cudnn_descriptor; }
#endif
    private:

        virtual size_t get_alias_offset() const { return data_offset; } 

#ifdef DLIB_USE_CUDA
        std::shared_ptr<cuda::tensor_descriptor> cudnn_descriptor;
#endif
        gpu_data* data_instance;
        any* _annotation;
        size_t data_offset;
        virtual gpu_data& data() { return *data_instance; }
        virtual const gpu_data& data() const { return *data_instance; }
    };

// ----------------------------------------------------------------------------------------

    class alias_tensor_const_instance 
    {
    public:
        const tensor& get() const { return inst; }
        operator const tensor& () { return inst; }

        alias_tensor_const_instance(const alias_tensor_instance& item) : inst(item) {}

    private:
        alias_tensor_instance inst;

        friend class alias_tensor;
        alias_tensor_const_instance() {}
    };

// ----------------------------------------------------------------------------------------

    class alias_tensor 
    {
    public:

        alias_tensor (
        ) {}

        alias_tensor (
            long long n_, long long k_ = 1, long long nr_ = 1, long long nc_ = 1
        ) 
        {
            DLIB_ASSERT( n_ >= 0 && k_ >= 0 && nr_ >= 0 && nc_ >= 0);

            inst.m_n = n_;
            inst.m_k = k_;
            inst.m_nr = nr_;
            inst.m_nc = nc_;
            inst.m_size = n_*k_*nr_*nc_;
        }

        long long num_samples(
        ) const { return inst.m_n; }

        long long k(
        ) const { return inst.m_k; }

        long long nr(
        ) const { return inst.m_nr; }

        long long nc(
        ) const { return inst.m_nc; }

        size_t size(
        ) const { return inst.m_size; }

        alias_tensor_instance operator() (
            tensor& t,
            size_t offset = 0
        ) const
        {
            DLIB_CASSERT(offset+size() <= t.size(), 
                "offset: "<<offset <<"\n"<<
                "size(): "<<size() <<"\n"<<
                "t.size(): "<<t.size() <<"\n");

#ifdef DLIB_USE_CUDA
            if (!inst.cudnn_descriptor)
            {
                inst.cudnn_descriptor = std::make_shared<cuda::tensor_descriptor>();
                inst.cudnn_descriptor->set_size(inst.m_n, inst.m_k, inst.m_nr, inst.m_nc);
            }
#endif
            inst.data_instance = &t.data();
            inst._annotation   = &t.annotation();
            // Note that t might already be an aliasing tensor so we need to take that into
            // account.
            inst.data_offset = t.get_alias_offset()+offset;
            return inst;
        }

        alias_tensor_const_instance operator() (
            const tensor& t,
            size_t offset = 0
        ) const
        {
            alias_tensor_const_instance temp;
            temp.inst = (*this)(const_cast<tensor&>(t),offset);
            return temp;
        }

    private:
        mutable alias_tensor_instance inst;
    };

    inline void serialize(const alias_tensor& item, std::ostream& out)
    {
        int version = 1;
        serialize(version, out);
        serialize(item.num_samples(), out);
        serialize(item.k(), out);
        serialize(item.nr(), out);
        serialize(item.nc(), out);
    }

    inline void deserialize(alias_tensor& item, std::istream& in)
    {
        int version = 0;
        deserialize(version, in);
        if (version != 1)
            throw serialization_error("Unexpected version found while deserializing dlib::alias_tensor.");
        long long num_samples, k, nr, nc;
        deserialize(num_samples, in);
        deserialize(k, in);
        deserialize(nr, in);
        deserialize(nc, in);
        item = alias_tensor(num_samples, k, nr, nc);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_DNn_TENSOR_H_