File size: 31,986 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_BAYES_UTILs_ABSTRACT_
#ifdef DLIB_BAYES_UTILs_ABSTRACT_
#include "../algs.h"
#include "../noncopyable.h"
#include "../interfaces/enumerable.h"
#include "../interfaces/map_pair.h"
#include "../serialize.h"
#include <iostream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
class assignment : public enumerable<map_pair<unsigned long, unsigned long> >
{
/*!
INITIAL VALUE
- size() == 0
ENUMERATION ORDER
The enumerator will iterate over the entries in the assignment in
ascending order according to index values. (i.e. the elements are
enumerated in sorted order according to the value of their keys)
WHAT THIS OBJECT REPRESENTS
This object models an assignment of random variables to particular values.
It is used with the joint_probability_table and conditional_probability_table
objects to represent assignments of various random variables to actual values.
So for example, if you had a joint_probability_table that represented the
following table:
P(A = 0, B = 0) = 0.2
P(A = 0, B = 1) = 0.3
P(A = 1, B = 0) = 0.1
P(A = 1, B = 1) = 0.4
Also lets define an enum so we have concrete index numbers for A and B
enum { A = 0, B = 1};
Then you could query the value of P(A=1, B=0) as follows:
assignment a;
a.set(A, 1);
a.set(B, 0);
// and now it is the case that:
table.probability(a) == 0.1
a[A] == 1
a[B] == 0
Also note that when enumerating the elements of an assignment object
the key() refers to the index and the value() refers to the value at that
index. For example:
// assume a is an assignment object
a.reset();
while (a.move_next())
{
// in this loop it is always the case that:
// a[a.element().key()] == a.element().value()
}
!*/
public:
assignment(
);
/*!
ensures
- this object is properly initialized
!*/
assignment(
const assignment& a
);
/*!
ensures
- #*this is a copy of a
!*/
assignment& operator = (
const assignment& rhs
);
/*!
ensures
- #*this is a copy of rhs
- returns *this
!*/
void clear(
);
/*!
ensures
- this object has been returned to its initial value
!*/
bool operator < (
const assignment& item
) const;
/*!
ensures
- The exact functioning of this operator is undefined. The only guarantee
is that it establishes a total ordering on all possible assignment objects.
In other words, this operator makes it so that you can use assignment
objects in the associative containers but otherwise isn't of any
particular use.
!*/
bool has_index (
unsigned long idx
) const;
/*!
ensures
- if (this assignment object has an entry for index idx) then
- returns true
- else
- returns false
!*/
void add (
unsigned long idx,
unsigned long value = 0
);
/*!
requires
- has_index(idx) == false
ensures
- #has_index(idx) == true
- #(*this)[idx] == value
!*/
void remove (
unsigned long idx
);
/*!
requires
- has_index(idx) == true
ensures
- #has_index(idx) == false
!*/
unsigned long& operator[] (
const long idx
);
/*!
requires
- has_index(idx) == true
ensures
- returns a reference to the value associated with index idx
!*/
const unsigned long& operator[] (
const long idx
) const;
/*!
requires
- has_index(idx) == true
ensures
- returns a const reference to the value associated with index idx
!*/
void swap (
assignment& item
);
/*!
ensures
- swaps *this and item
!*/
};
inline void swap (
assignment& a,
assignment& b
) { a.swap(b); }
/*!
provides a global swap
!*/
std::ostream& operator << (
std::ostream& out,
const assignment& a
);
/*!
ensures
- writes a to the given output stream in the following format:
(index1:value1, index2:value2, ..., indexN:valueN)
!*/
void serialize (
const assignment& item,
std::ostream& out
);
/*!
provides serialization support
!*/
void deserialize (
assignment& item,
std::istream& in
);
/*!
provides deserialization support
!*/
// ------------------------------------------------------------------------
class joint_probability_table : public enumerable<map_pair<assignment, double> >
{
/*!
INITIAL VALUE
- size() == 0
ENUMERATION ORDER
The enumerator will iterate over the entries in the probability table
in no particular order but they will all be visited.
WHAT THIS OBJECT REPRESENTS
This object models a joint probability table. That is, it models
the function p(X). So this object models the probability of a particular
set of variables (referred to as X).
!*/
public:
joint_probability_table(
);
/*!
ensures
- this object is properly initialized
!*/
joint_probability_table (
const joint_probability_table& t
);
/*!
ensures
- this object is a copy of t
!*/
void clear(
);
/*!
ensures
- this object has its initial value
!*/
joint_probability_table& operator= (
const joint_probability_table& rhs
);
/*!
ensures
- this object is a copy of rhs
- returns a reference to *this
!*/
bool has_entry_for (
const assignment& a
) const;
/*!
ensures
- if (this joint_probability_table has an entry for p(X = a)) then
- returns true
- else
- returns false
!*/
void set_probability (
const assignment& a,
double p
);
/*!
requires
- 0 <= p <= 1
ensures
- if (has_entry_for(a) == false) then
- #size() == size() + 1
- #probability(a) == p
- #has_entry_for(a) == true
!*/
void add_probability (
const assignment& a,
double p
);
/*!
requires
- 0 <= p <= 1
ensures
- if (has_entry_for(a) == false) then
- #size() == size() + 1
- #probability(a) == p
- else
- #probability(a) == min(probability(a) + p, 1.0)
(i.e. does a saturating add)
- #has_entry_for(a) == true
!*/
const double probability (
const assignment& a
) const;
/*!
ensures
- returns the probability p(X == a)
!*/
template <
typename T
>
void marginalize (
const T& vars,
joint_probability_table& output_table
) const;
/*!
requires
- T is an implementation of set/set_kernel_abstract.h
ensures
- marginalizes *this by summing over all variables not in vars. The
result is stored in output_table.
!*/
void marginalize (
const unsigned long var,
joint_probability_table& output_table
) const;
/*!
ensures
- is identical to calling the above marginalize() function with a set
that contains only var. Or in other words, performs a marginalization
with just one variable var. So that output_table will contain a table giving
the marginal probability of var all by itself.
!*/
void normalize (
);
/*!
ensures
- let sum == the sum of all the probabilities in this table
- after normalize() has finished it will be the case that the sum of all
the entries in this table is 1.0. This is accomplished by dividing all
the entries by the sum described above.
!*/
void swap (
joint_probability_table& item
);
/*!
ensures
- swaps *this and item
!*/
};
inline void swap (
joint_probability_table& a,
joint_probability_table& b
) { a.swap(b); }
/*!
provides a global swap
!*/
void serialize (
const joint_probability_table& item,
std::ostream& out
);
/*!
provides serialization support
!*/
void deserialize (
joint_probability_table& item,
std::istream& in
);
/*!
provides deserialization support
!*/
// ----------------------------------------------------------------------------------------
class conditional_probability_table : noncopyable
{
/*!
INITIAL VALUE
- num_values() == 0
- has_value_for(x, y) == false for all values of x and y
WHAT THIS OBJECT REPRESENTS
This object models a conditional probability table. That is, it models
the function p( X | parents). So this object models the conditional
probability of a particular variable (referred to as X) given another set
of variables (referred to as parents).
!*/
public:
conditional_probability_table(
);
/*!
ensures
- this object is properly initialized
!*/
void clear(
);
/*!
ensures
- this object has its initial value
!*/
void empty_table (
);
/*!
ensures
- for all possible v and p:
- #has_entry_for(v,p) == false
(i.e. this function clears out the table when you call it but doesn't
change the value of num_values())
!*/
void set_num_values (
unsigned long num
);
/*!
ensures
- #num_values() == num
- for all possible v and p:
- #has_entry_for(v,p) == false
(i.e. this function clears out the table when you call it)
!*/
unsigned long num_values (
) const;
/*!
ensures
- This object models the probability table p(X | parents). This
function returns the number of values X can take on.
!*/
bool has_entry_for (
unsigned long value,
const assignment& ps
) const;
/*!
ensures
- if (this conditional_probability_table has an entry for p(X = value, parents = ps)) then
- returns true
- else
- returns false
!*/
void set_probability (
unsigned long value,
const assignment& ps,
double p
);
/*!
requires
- value < num_values()
- 0 <= p <= 1
ensures
- #probability(ps, value) == p
- #has_entry_for(value, ps) == true
!*/
double probability(
unsigned long value,
const assignment& ps
) const;
/*!
requires
- value < num_values()
- has_entry_for(value, ps) == true
ensures
- returns the probability p( X = value | parents = ps).
!*/
void swap (
conditional_probability_table& item
);
/*!
ensures
- swaps *this and item
!*/
};
inline void swap (
conditional_probability_table& a,
conditional_probability_table& b
) { a.swap(b); }
/*!
provides a global swap
!*/
void serialize (
const conditional_probability_table& item,
std::ostream& out
);
/*!
provides serialization support
!*/
void deserialize (
conditional_probability_table& item,
std::istream& in
);
/*!
provides deserialization support
!*/
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
class bayes_node : noncopyable
{
/*!
INITIAL VALUE
- is_evidence() == false
- value() == 0
- table().num_values() == 0
WHAT THIS OBJECT REPRESENTS
This object represents a node in a bayesian network. It is
intended to be used inside the dlib::directed_graph object to
represent bayesian networks.
!*/
public:
bayes_node (
);
/*!
ensures
- this object is properly initialized
!*/
unsigned long value (
) const;
/*!
ensures
- returns the current value of this node
!*/
void set_value (
unsigned long new_value
);
/*!
requires
- new_value < table().num_values()
ensures
- #value() == new_value
!*/
conditional_probability_table& table (
);
/*!
ensures
- returns a reference to the conditional_probability_table associated with this node
!*/
const conditional_probability_table& table (
) const;
/*!
ensures
- returns a const reference to the conditional_probability_table associated with this
node.
!*/
bool is_evidence (
) const;
/*!
ensures
- if (this is an evidence node) then
- returns true
- else
- returns false
!*/
void set_as_nonevidence (
);
/*!
ensures
- #is_evidence() == false
!*/
void set_as_evidence (
);
/*!
ensures
- #is_evidence() == true
!*/
void swap (
bayes_node& item
);
/*!
ensures
- swaps *this and item
!*/
};
inline void swap (
bayes_node& a,
bayes_node& b
) { a.swap(b); }
/*!
provides a global swap
!*/
void serialize (
const bayes_node& item,
std::ostream& out
);
/*!
provides serialization support
!*/
void deserialize (
bayes_node& item,
std::istream& in
);
/*!
provides deserialization support
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
/*
The following group of functions are convenience functions for manipulating
bayes_node objects while they are inside a directed_graph. These functions
also have additional requires clauses that, in debug mode, will protect you
from attempts to manipulate a bayesian network in an inappropriate way.
*/
namespace bayes_node_utils
{
template <
typename T
>
void set_node_value (
T& bn,
unsigned long n,
unsigned long val
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
- val < node_num_values(bn, n)
ensures
- #bn.node(n).data.value() = val
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
unsigned long node_value (
const T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- returns bn.node(n).data.value()
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
bool node_is_evidence (
const T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- returns bn.node(n).data.is_evidence()
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
void set_node_as_evidence (
T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- executes: bn.node(n).data.set_as_evidence()
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
void set_node_as_nonevidence (
T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- executes: bn.node(n).data.set_as_nonevidence()
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
void set_node_num_values (
T& bn,
unsigned long n,
unsigned long num
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- #bn.node(n).data.table().num_values() == num
(i.e. sets the number of different values this node can take)
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
unsigned long node_num_values (
const T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- returns bn.node(n).data.table().num_values()
(i.e. returns the number of different values this node can take)
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
const double node_probability (
const T& bn,
unsigned long n,
unsigned long value,
const assignment& parents
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
- value < node_num_values(bn,n)
- parents.size() == bn.node(n).number_of_parents()
- if (parents.has_index(x)) then
- bn.has_edge(x, n)
- parents[x] < node_num_values(bn,x)
ensures
- returns bn.node(n).data.table().probability(value, parents)
(i.e. returns the probability of node n having the given value when
its parents have the given assignment)
!*/
// ------------------------------------------------------------------------------------
template <
typename T
>
const double set_node_probability (
const T& bn,
unsigned long n,
unsigned long value,
const assignment& parents,
double p
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
- value < node_num_values(bn,n)
- 0 <= p <= 1
- parents.size() == bn.node(n).number_of_parents()
- if (parents.has_index(x)) then
- bn.has_edge(x, n)
- parents[x] < node_num_values(bn,x)
ensures
- #bn.node(n).data.table().probability(value, parents) == p
(i.e. sets the probability of node n having the given value when
its parents have the given assignment to the probability p)
!*/
// ------------------------------------------------------------------------------------
template <typename T>
const assignment node_first_parent_assignment (
const T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- returns an assignment A such that:
- A.size() == bn.node(n).number_of_parents()
- if (P is a parent of bn.node(n)) then
- A.has_index(P)
- A[P] == 0
- I.e. this function returns an assignment that contains all
the parents of the given node. Also, all the values of each
parent in the assignment is set to zero.
!*/
// ------------------------------------------------------------------------------------
template <typename T>
bool node_next_parent_assignment (
const T& bn,
unsigned long n,
assignment& A
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
- A.size() == bn.node(n).number_of_parents()
- if (A.has_index(x)) then
- bn.has_edge(x, n)
- A[x] < node_num_values(bn,x)
ensures
- The behavior of this function is defined by the following code:
assignment a(node_first_parent_assignment(bn,n);
do {
// this loop loops over all possible parent assignments
// of the node bn.node(n). Each time through the loop variable a
// will be the next assignment.
} while (node_next_parent_assignment(bn,n,a))
!*/
// ------------------------------------------------------------------------------------
template <typename T>
bool node_cpt_filled_out (
const T& bn,
unsigned long n
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
- n < bn.number_of_nodes()
ensures
- if (the conditional_probability_table bn.node(n).data.table() is
fully filled out for this node) then
- returns true
- This means that each parent assignment for the given node
along with all possible values of this node shows up in the
table.
- It also means that all the probabilities conditioned on the
same parent assignment sum to 1.0
- else
- returns false
!*/
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class bayesian_network_gibbs_sampler : noncopyable
{
/*!
INITIAL VALUE
This object has no state
WHAT THIS OBJECT REPRESENTS
This object performs Markov Chain Monte Carlo sampling of a bayesian
network using the Gibbs sampling technique.
Note that this object is limited to only bayesian networks that
don't contain deterministic nodes. That is, incorrect results may
be computed if this object is used when the bayesian network contains
any nodes that have a probability of 1 in their conditional probability
tables for any event. So don't use this object for networks with
deterministic nodes.
!*/
public:
bayesian_network_gibbs_sampler (
);
/*!
ensures
- this object is properly initialized
!*/
template <
typename T
>
void sample_graph (
T& bn
)
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- T::type == bayes_node
ensures
- modifies randomly (via the Gibbs sampling technique) samples all the nodes
in the network and updates their values with the newly sampled values
!*/
};
// ----------------------------------------------------------------------------------------
class bayesian_network_join_tree : noncopyable
{
/*!
WHAT THIS OBJECT REPRESENTS
This object represents an implementation of the join tree algorithm
for inference in bayesian networks. It doesn't have any mutable state.
To you use you just give it a directed_graph that contains a bayesian
network and a graph object that contains that networks corresponding
join tree. Then you may query this object to determine the probabilities
of any variables in the original bayesian network.
!*/
public:
template <
typename bn_type,
typename join_tree_type
>
bayesian_network_join_tree (
const bn_type& bn,
const join_tree_type& join_tree
);
/*!
requires
- bn_type is an implementation of directed_graph/directed_graph_kernel_abstract.h
- bn_type::type == bayes_node
- join_tree_type is an implementation of graph/graph_kernel_abstract.h
- join_tree_type::type is an implementation of set/set_compare_abstract.h and
this set type contains unsigned long objects.
- join_tree_type::edge_type is an implementation of set/set_compare_abstract.h and
this set type contains unsigned long objects.
- is_join_tree(bn, join_tree) == true
- bn == a valid bayesian network with all its conditional probability tables
filled out
- for all valid n:
- node_cpt_filled_out(bn,n) == true
- graph_contains_length_one_cycle(bn) == false
- graph_is_connected(bn) == true
- bn.number_of_nodes() > 0
ensures
- this object is properly initialized
!*/
unsigned long number_of_nodes (
) const;
/*!
ensures
- returns the number of nodes in the bayesian network that this
object was instantiated from.
!*/
const matrix<double,1> probability(
unsigned long idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns the probability distribution for the node with index idx that was in the bayesian
network that *this was instantiated from. Let D represent this distribution, then:
- D.nc() == the number of values the node idx ranges over
- D.nr() == 1
- D(i) == the probability of node idx taking on the value i
!*/
void swap (
bayesian_network_join_tree& item
);
/*!
ensures
- swaps *this with item
!*/
};
inline void swap (
bayesian_network_join_tree& a,
bayesian_network_join_tree& b
) { a.swap(b); }
/*!
provides a global swap
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_BAYES_UTILs_ABSTRACT_
|