File size: 58,567 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
// Copyright (C) 2007  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_BAYES_UTILs_
#define DLIB_BAYES_UTILs_

#include "bayes_utils_abstract.h"

#include <algorithm>
#include <ctime>
#include <memory>
#include <vector>

#include "../string.h"
#include "../map.h"
#include "../matrix.h"
#include "../rand.h"
#include "../array.h"
#include "../set.h"
#include "../algs.h"
#include "../noncopyable.h"
#include "../graph.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class assignment 
    {
    public:

        assignment()
        {
        }

        assignment(
            const assignment& a
        )
        {
            a.reset();
            while (a.move_next())
            {
                unsigned long idx = a.element().key();
                unsigned long value = a.element().value();
                vals.add(idx,value);
            }
        }

        assignment& operator = (
            const assignment& rhs
        )
        {
            if (this == &rhs)
                return *this;

            assignment(rhs).swap(*this);
            return *this;
        }

        void clear()
        {
            vals.clear();
        }

        bool operator < (
            const assignment& item
        ) const 
        {  
            if (size() < item.size())
                return true;
            else if (size() > item.size())
                return false;

            reset();
            item.reset();
            while (move_next())
            {
                item.move_next();
                if (element().key() < item.element().key())
                    return true;
                else if (element().key() > item.element().key())
                    return false;
                else if (element().value() < item.element().value())
                    return true;
                else if (element().value() > item.element().value())
                    return false;
            }

            return false;
        }

        bool has_index (
            unsigned long idx
        ) const
        {
            return vals.is_in_domain(idx);
        }

        void add (
            unsigned long idx,
            unsigned long value = 0
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( has_index(idx) == false ,
                         "\tvoid assignment::add(idx)"
                         << "\n\tYou can't add the same index to an assignment object more than once"
                         << "\n\tidx:  " << idx 
                         << "\n\tthis: " << this
            );

            vals.add(idx, value);
        }

        unsigned long& operator[] (
            const long idx
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( has_index(idx) == true ,
                         "\tunsigned long assignment::operator[](idx)"
                         << "\n\tYou can't access an index value if it isn't already in the object"
                         << "\n\tidx:  " << idx 
                         << "\n\tthis: " << this
            );

            return vals[idx];
        }

        const unsigned long& operator[] (
            const long idx
        ) const
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( has_index(idx) == true ,
                         "\tunsigned long assignment::operator[](idx)"
                         << "\n\tYou can't access an index value if it isn't already in the object"
                         << "\n\tidx:  " << idx 
                         << "\n\tthis: " << this
            );

            return vals[idx];
        }

        void swap (
            assignment& item
        )
        {
            vals.swap(item.vals);
        }

        void remove (
            unsigned long idx
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( has_index(idx) == true ,
                         "\tunsigned long assignment::remove(idx)"
                         << "\n\tYou can't remove an index value if it isn't already in the object"
                         << "\n\tidx:  " << idx 
                         << "\n\tthis: " << this
            );

            vals.destroy(idx);
        }

        unsigned long size() const { return vals.size(); }

        void reset() const { vals.reset(); }

        bool move_next() const { return vals.move_next(); }

        map_pair<unsigned long, unsigned long>& element() 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(current_element_valid() == true,
                        "\tmap_pair<unsigned long,unsigned long>& assignment::element()"
                        << "\n\tyou can't access the current element if it doesn't exist"
                        << "\n\tthis: " << this
            );
            return vals.element(); 
        }

        const map_pair<unsigned long, unsigned long>& element() const 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(current_element_valid() == true,
                        "\tconst map_pair<unsigned long,unsigned long>& assignment::element() const"
                        << "\n\tyou can't access the current element if it doesn't exist"
                        << "\n\tthis: " << this
            );

            return vals.element(); 
        }

        bool at_start() const { return vals.at_start(); }

        bool current_element_valid() const { return vals.current_element_valid(); }

        friend inline void serialize (
            const assignment& item,
            std::ostream& out 
        )   
        {
            serialize(item.vals, out);
        }

        friend inline void deserialize (
            assignment& item,
            std::istream& in
        )
        {
            deserialize(item.vals, in);
        }

    private:
        mutable dlib::map<unsigned long, unsigned long>::kernel_1b_c vals;
    };

    inline std::ostream& operator << (
        std::ostream& out,
        const assignment& a
    )
    {
        a.reset();
        out << "(";
        if (a.move_next())
            out << a.element().key() << ":" << a.element().value();

        while (a.move_next())
        {
            out << ", " << a.element().key() << ":" << a.element().value();
        }

        out << ")";
        return out;
    }


    inline void swap (
        assignment& a,
        assignment& b
    )
    {
        a.swap(b);
    }


// ------------------------------------------------------------------------

    class joint_probability_table 
    {
        /*!
            INITIAL VALUE
                - table.size() == 0

            CONVENTION
                - size() == table.size()
                - probability(a) == table[a]
        !*/
    public:

        joint_probability_table (
            const joint_probability_table& t
        )
        {
            t.reset();
            while (t.move_next())
            {
                assignment a = t.element().key();
                double p = t.element().value();
                set_probability(a,p);
            }
        }

        joint_probability_table() {}

        joint_probability_table& operator= (
            const joint_probability_table& rhs
        )
        {
            if (this == &rhs)
                return *this;
            joint_probability_table(rhs).swap(*this);
            return *this;
        }

        void set_probability (
            const assignment& a,
            double p
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0.0 <= p && p <= 1.0,
                        "\tvoid& joint_probability_table::set_probability(a,p)"
                        << "\n\tyou have given an invalid probability value"
                        << "\n\tp:    " << p 
                        << "\n\ta:    " << a 
                        << "\n\tthis: " << this
            );

            if (table.is_in_domain(a))
            {
                table[a] = p;
            }
            else
            {
                assignment temp(a);
                table.add(temp,p);
            }
        }

        bool has_entry_for (
            const assignment& a
        ) const
        {
            return table.is_in_domain(a);
        }

        void add_probability (
            const assignment& a,
            double p
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0.0 <= p && p <= 1.0,
                        "\tvoid& joint_probability_table::add_probability(a,p)"
                        << "\n\tyou have given an invalid probability value"
                        << "\n\tp:    " << p 
                        << "\n\ta:    " << a 
                        << "\n\tthis: " << this
            );

            if (table.is_in_domain(a))
            {
                table[a] += p;
                if (table[a] > 1.0)
                    table[a] = 1.0;
            }
            else
            {
                assignment temp(a);
                table.add(temp,p);
            }
        }

        double probability (
            const assignment& a
        ) const
        {
            return table[a];
        }

        void clear()
        {
            table.clear();
        }

        size_t size () const { return table.size(); }
        bool move_next() const { return table.move_next(); }
        void reset() const { table.reset(); }
        map_pair<assignment,double>& element() 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(current_element_valid() == true,
                        "\tmap_pair<assignment,double>& joint_probability_table::element()"
                        << "\n\tyou can't access the current element if it doesn't exist"
                        << "\n\tthis: " << this
            );

            return table.element(); 
        }

        const map_pair<assignment,double>& element() const 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(current_element_valid() == true,
                        "\tconst map_pair<assignment,double>& joint_probability_table::element() const"
                        << "\n\tyou can't access the current element if it doesn't exist"
                        << "\n\tthis: " << this
            );

            return table.element(); 
        }

        bool at_start() const { return table.at_start(); }

        bool current_element_valid() const { return table.current_element_valid(); }


        template <typename T>
        void marginalize (
            const T& vars,
            joint_probability_table& out
        ) const
        {
            out.clear();
            double p;
            reset();
            while (move_next())
            {
                assignment a;
                const assignment& asrc = element().key();
                p = element().value();

                asrc.reset();
                while (asrc.move_next())
                {
                    if (vars.is_member(asrc.element().key()))
                        a.add(asrc.element().key(), asrc.element().value());
                }

                out.add_probability(a,p);
            }
        }

        void marginalize (
            const unsigned long var,
            joint_probability_table& out
        ) const
        {
            out.clear();
            double p;
            reset();
            while (move_next())
            {
                assignment a;
                const assignment& asrc = element().key();
                p = element().value();

                asrc.reset();
                while (asrc.move_next())
                {
                    if (var == asrc.element().key())
                        a.add(asrc.element().key(), asrc.element().value());
                }

                out.add_probability(a,p);
            }
        }

        void normalize (
        )
        {
            double sum = 0;

            reset();
            while (move_next())
                sum += element().value();

            reset();
            while (move_next())
                element().value() /= sum;
        }

        void swap (
            joint_probability_table& item
        )
        {
            table.swap(item.table);
        }

        friend inline void serialize (
            const joint_probability_table& item,
            std::ostream& out 
        )   
        {
            serialize(item.table, out);
        }

        friend inline void deserialize (
            joint_probability_table& item,
            std::istream& in
        )
        {
            deserialize(item.table, in);
        }

    private:

        dlib::map<assignment, double >::kernel_1b_c table;
    };

    inline void swap (
        joint_probability_table& a,
        joint_probability_table& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------

    class conditional_probability_table : noncopyable
    {
        /*!
            INITIAL VALUE
                - table.size() == 0

            CONVENTION
                - if (table.is_in_domain(ps) && value < num_vals && table[ps](value) >= 0) then
                    - has_entry_for(value,ps) == true
                    - probability(value,ps) == table[ps](value)
                - else
                    - has_entry_for(value,ps) == false 

                - num_values() == num_vals
        !*/
    public:

        conditional_probability_table()
        {
            clear();
        }

        void set_num_values (
            unsigned long num
        )
        {
            num_vals = num;
            table.clear();
        }

        bool has_entry_for (
            unsigned long value,
            const assignment& ps
        ) const
        {
            if (table.is_in_domain(ps) && value < num_vals && table[ps](value) >= 0)
                return true;
            else
                return false;
        }

        unsigned long num_values (
        ) const { return num_vals; }

        void set_probability (
            unsigned long value,
            const assignment& ps,
            double p
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( value < num_values() && 0.0 <= p && p <= 1.0 ,
                         "\tvoid conditional_probability_table::set_probability()"
                         << "\n\tinvalid arguments to set_probability"
                         << "\n\tvalue: " << value 
                         << "\n\tnum_values(): " << num_values()
                         << "\n\tp:     " << p 
                         << "\n\tps:    " << ps 
                         << "\n\tthis:  " << this
            );

            if (table.is_in_domain(ps))
            {
                table[ps](value) = p;
            }
            else
            {
                matrix<double,1> dist(num_vals);
                set_all_elements(dist,-1);
                dist(value) = p;
                assignment temp(ps);
                table.add(temp,dist);
            }
        }

        double probability(
            unsigned long value,
            const assignment& ps 
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( value < num_values() && has_entry_for(value,ps) ,
                         "\tvoid conditional_probability_table::probability()"
                         << "\n\tinvalid arguments to probability"
                         << "\n\tvalue:        " << value 
                         << "\n\tnum_values(): " << num_values() 
                         << "\n\tps:           " << ps 
                         << "\n\tthis:         " << this
            );

            return table[ps](value);
        }

        void clear()
        {
            table.clear();
            num_vals = 0;
        }

        void empty_table ()
        {
            table.clear();
        }

        void swap (
            conditional_probability_table& item 
        ) 
        { 
            exchange(num_vals, item.num_vals);
            table.swap(item.table);
        }

        friend inline void serialize (
            const conditional_probability_table& item,
            std::ostream& out 
        )   
        {
            serialize(item.table, out);
            serialize(item.num_vals, out);
        }

        friend inline void deserialize (
            conditional_probability_table& item,
            std::istream& in
        )
        {
            deserialize(item.table, in);
            deserialize(item.num_vals, in);
        }

    private:
        dlib::map<assignment, matrix<double,1> >::kernel_1b_c table;
        unsigned long num_vals;
    };

    inline void swap (
        conditional_probability_table& a,
        conditional_probability_table& b
    ) { a.swap(b); }

// ------------------------------------------------------------------------

    class bayes_node : noncopyable
    {
    public:
        bayes_node ()
        {
            is_instantiated = false;
            value_ = 0;
        }

        unsigned long value (
        ) const { return value_;}

        void set_value (
            unsigned long new_value
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( new_value < table().num_values(),
                         "\tvoid bayes_node::set_value(new_value)"
                         << "\n\tnew_value must be less than the number of possible values for this node"
                         << "\n\tnew_value:            " << new_value 
                         << "\n\ttable().num_values(): " << table().num_values() 
                         << "\n\tthis:                 " << this
            );

            value_ = new_value;
        }

        conditional_probability_table& table (
        ) { return table_; }

        const conditional_probability_table& table (
        ) const { return table_; }

        bool is_evidence (
        ) const { return is_instantiated; }

        void set_as_nonevidence (
        ) { is_instantiated = false; }

        void set_as_evidence (
        ) { is_instantiated = true; }

        void swap (
            bayes_node& item 
        ) 
        { 
            exchange(value_, item.value_);
            exchange(is_instantiated, item.is_instantiated);
            table_.swap(item.table_);
        }

        friend inline void serialize (
            const bayes_node& item,
            std::ostream& out 
        )   
        {
            serialize(item.value_, out);
            serialize(item.is_instantiated, out);
            serialize(item.table_, out);
        }

        friend inline void deserialize (
            bayes_node& item,
            std::istream& in
        )
        {
            deserialize(item.value_, in);
            deserialize(item.is_instantiated, in);
            deserialize(item.table_, in);
        }

    private:

        unsigned long value_; 
        bool is_instantiated;
        conditional_probability_table table_;
    };

    inline void swap (
        bayes_node& a,
        bayes_node& b
    ) { a.swap(b); }

// ------------------------------------------------------------------------

    namespace bayes_node_utils
    {

        template <typename T>
        unsigned long node_num_values (
            const T& bn,
            unsigned long n
        )  
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tvoid bayes_node_utils::node_num_values(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            return bn.node(n).data.table().num_values(); 
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        void set_node_value (
            T& bn,
            unsigned long n,
            unsigned long val
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes() && val < node_num_values(bn,n),
                         "\tvoid bayes_node_utils::set_node_value(bn, n, val)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tval:                   " << val 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
                         << "\n\tnode_num_values(bn,n): " << node_num_values(bn,n) 
            );

            bn.node(n).data.set_value(val); 
        }

    // ----------------------------------------------------------------------------------------
        template <typename T>
        unsigned long node_value (
            const T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tunsigned long bayes_node_utils::node_value(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            return bn.node(n).data.value();
        }
    // ----------------------------------------------------------------------------------------

        template <typename T>
        bool node_is_evidence (
            const T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tbool bayes_node_utils::node_is_evidence(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            return bn.node(n).data.is_evidence();
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        void set_node_as_evidence (
            T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tvoid bayes_node_utils::set_node_as_evidence(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            bn.node(n).data.set_as_evidence(); 
        }

    // ----------------------------------------------------------------------------------------
        template <typename T>
        void set_node_as_nonevidence (
            T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tvoid bayes_node_utils::set_node_as_nonevidence(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            bn.node(n).data.set_as_nonevidence(); 
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        void set_node_num_values (
            T& bn,
            unsigned long n,
            unsigned long num
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tvoid bayes_node_utils::set_node_num_values(bn, n, num)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            bn.node(n).data.table().set_num_values(num); 
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        double node_probability (
            const T& bn,
            unsigned long n,
            unsigned long value,
            const assignment& parents 
        ) 
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes() && value < node_num_values(bn,n),
                         "\tdouble bayes_node_utils::node_probability(bn, n, value, parents)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tvalue:                 " << value 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
                         << "\n\tnode_num_values(bn,n): " << node_num_values(bn,n) 
            );

            DLIB_ASSERT( parents.size() == bn.node(n).number_of_parents(),
                         "\tdouble bayes_node_utils::node_probability(bn, n, value, parents)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                             " << n 
                         << "\n\tparents.size():                " << parents.size()
                         << "\n\tb.node(n).number_of_parents(): " << bn.node(n).number_of_parents()
            );

#ifdef ENABLE_ASSERTS
            parents.reset();
            while (parents.move_next())
            {
                const unsigned long x = parents.element().key();
                DLIB_ASSERT( bn.has_edge(x, n),
                             "\tdouble bayes_node_utils::node_probability(bn, n, value, parents)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn: " << n 
                             << "\n\tx: " << x 
                );
                DLIB_ASSERT( parents[x] < node_num_values(bn,x),
                             "\tdouble bayes_node_utils::node_probability(bn, n, value, parents)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn:                     " << n 
                             << "\n\tx:                     " << x 
                             << "\n\tparents[x]:            " << parents[x] 
                             << "\n\tnode_num_values(bn,x): " << node_num_values(bn,x) 
                );
            }
#endif

            return bn.node(n).data.table().probability(value, parents);
        }

    // ----------------------------------------------------------------------------------------

        template <typename T>
        void set_node_probability (
            T& bn,
            unsigned long n,
            unsigned long value,
            const assignment& parents,
            double p
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes() && value < node_num_values(bn,n),
                         "\tvoid bayes_node_utils::set_node_probability(bn, n, value, parents, p)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tp:                     " << p 
                         << "\n\tvalue:                 " << value 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
                         << "\n\tnode_num_values(bn,n): " << node_num_values(bn,n) 
            );

            DLIB_ASSERT( parents.size() == bn.node(n).number_of_parents(),
                         "\tvoid bayes_node_utils::set_node_probability(bn, n, value, parents, p)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                             " << n 
                         << "\n\tp:                             " << p 
                         << "\n\tparents.size():                " << parents.size()
                         << "\n\tbn.node(n).number_of_parents(): " << bn.node(n).number_of_parents()
            );

            DLIB_ASSERT( 0.0 <= p && p <= 1.0,
                         "\tvoid bayes_node_utils::set_node_probability(bn, n, value, parents, p)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn: " << n 
                         << "\n\tp: " << p 
            );

#ifdef ENABLE_ASSERTS
            parents.reset();
            while (parents.move_next())
            {
                const unsigned long x = parents.element().key();
                DLIB_ASSERT( bn.has_edge(x, n),
                             "\tvoid bayes_node_utils::set_node_probability(bn, n, value, parents, p)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn: " << n 
                             << "\n\tx: " << x 
                );
                DLIB_ASSERT( parents[x] < node_num_values(bn,x),
                             "\tvoid bayes_node_utils::set_node_probability(bn, n, value, parents, p)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn:                     " << n 
                             << "\n\tx:                     " << x 
                             << "\n\tparents[x]:            " << parents[x] 
                             << "\n\tnode_num_values(bn,x): " << node_num_values(bn,x) 
                );
            }
#endif

            bn.node(n).data.table().set_probability(value,parents,p);
        }

// ----------------------------------------------------------------------------------------

        template <typename T>
        const assignment node_first_parent_assignment (
            const T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tconst assignment bayes_node_utils::node_first_parent_assignment(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
            );

            assignment a;
            const unsigned long num_parents = bn.node(n).number_of_parents();
            for (unsigned long i = 0; i < num_parents; ++i)
            {
                a.add(bn.node(n).parent(i).index(), 0);
            }
            return a;
        }

// ----------------------------------------------------------------------------------------

        template <typename T>
        bool node_next_parent_assignment (
            const T& bn,
            unsigned long n,
            assignment& a
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tbool bayes_node_utils::node_next_parent_assignment(bn, n, a)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
            );

            DLIB_ASSERT( a.size() == bn.node(n).number_of_parents(),
                         "\tbool bayes_node_utils::node_next_parent_assignment(bn, n, a)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                             " << n 
                         << "\n\ta.size():                      " << a.size()
                         << "\n\tbn.node(n).number_of_parents(): " << bn.node(n).number_of_parents()
            );

#ifdef ENABLE_ASSERTS
            a.reset();
            while (a.move_next())
            {
                const unsigned long x = a.element().key();
                DLIB_ASSERT( bn.has_edge(x, n),
                             "\tbool bayes_node_utils::node_next_parent_assignment(bn, n, a)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn: " << n 
                             << "\n\tx: " << x 
                );
                DLIB_ASSERT( a[x] < node_num_values(bn,x),
                             "\tbool bayes_node_utils::node_next_parent_assignment(bn, n, a)"
                             << "\n\tInvalid arguments to this function"
                             << "\n\tn:                     " << n 
                             << "\n\tx:                     " << x 
                             << "\n\ta[x]:                  " << a[x] 
                             << "\n\tnode_num_values(bn,x): " << node_num_values(bn,x) 
                );
            }
#endif

            // basically this loop just adds 1 to the assignment but performs
            // carries if necessary
            for (unsigned long p = 0; p < a.size(); ++p)
            {
                const unsigned long pindex = bn.node(n).parent(p).index();
                a[pindex] += 1;

                // if we need to perform a carry
                if (a[pindex] >= node_num_values(bn,pindex))
                {
                    a[pindex] = 0;
                }
                else
                {
                    // no carry necessary so we are done
                    return true;
                }
            }

            // we got through the entire loop which means a carry propagated all the way out
            // so there must not be any more valid assignments left
            return false;
        }

// ----------------------------------------------------------------------------------------

        template <typename T>
        bool node_cpt_filled_out (
            const T& bn,
            unsigned long n
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT( n < bn.number_of_nodes(),
                         "\tbool bayes_node_utils::node_cpt_filled_out(bn, n)"
                         << "\n\tInvalid arguments to this function"
                         << "\n\tn:                     " << n 
                         << "\n\tbn.number_of_nodes():  " << bn.number_of_nodes() 
            );

            const unsigned long num_values = node_num_values(bn,n);


            const conditional_probability_table& table = bn.node(n).data.table();

            // now loop over all the possible parent assignments for this node
            assignment a(node_first_parent_assignment(bn,n));
            do
            {
                double sum = 0;
                // make sure that this assignment has an entry for all the values this node can take one
                for (unsigned long value = 0; value < num_values; ++value)
                {
                    if (table.has_entry_for(value,a) == false)
                        return false;
                    else
                        sum += table.probability(value,a);
                }

                // check if the sum of probabilities equals 1 as it should
                if (std::abs(sum-1.0) > 1e-5)
                    return false;
            } while (node_next_parent_assignment(bn,n,a));

            return true;
        }

    }

// ----------------------------------------------------------------------------------------

    class bayesian_network_gibbs_sampler : noncopyable
    {
    public:

        bayesian_network_gibbs_sampler ()
        {
            rnd.set_seed(cast_to_string(std::time(0)));
        }


        template <
            typename T
            >
        void sample_graph (
            T& bn
        )
        {
            using namespace bayes_node_utils;
            for (unsigned long n = 0; n < bn.number_of_nodes(); ++n)
            {
                if (node_is_evidence(bn, n))
                    continue;

                samples.set_size(node_num_values(bn,n)); 
                // obtain the probability distribution for this node
                for (long i = 0; i < samples.nc(); ++i)
                {
                    set_node_value(bn, n, i);
                    samples(i) = node_probability(bn, n);

                    for (unsigned long j = 0; j < bn.node(n).number_of_children(); ++j)
                        samples(i) *= node_probability(bn, bn.node(n).child(j).index());
                }

                //normalize samples
                samples /= sum(samples);


                // select a random point in the probability distribution
                double prob = rnd.get_random_double();

                // now find the point in the distribution this probability corresponds to
                long j;
                for (j = 0; j < samples.nc()-1; ++j)
                {
                    if (prob <= samples(j))
                        break;
                    else
                        prob -= samples(j);
                }

                set_node_value(bn, n, j);
            }
        }


    private:

        template <
            typename T
            >
        double node_probability (
            const T& bn,
            unsigned long n 
        ) 
        /*!
            requires
                - n < bn.number_of_nodes()
            ensures
                - computes the probability of node n having its current value given
                  the current values of its parents in the network bn
        !*/
        {
            v.clear();
            for (unsigned long i = 0; i < bn.node(n).number_of_parents(); ++i)
            {
                v.add(bn.node(n).parent(i).index(), bn.node(n).parent(i).data.value());
            }
            return bn.node(n).data.table().probability(bn.node(n).data.value(), v);
        }

        assignment v;

        dlib::rand rnd;
        matrix<double,1> samples; 
    };

// ----------------------------------------------------------------------------------------

    namespace bayesian_network_join_tree_helpers
    {
        class bnjt
        {
            /*!
                this object is the base class used in this pimpl idiom
            !*/
        public:
            virtual ~bnjt() {}

            virtual const matrix<double,1> probability(
                unsigned long idx
            )  const = 0;
        };

        template <typename T, typename U>
        class bnjt_impl : public bnjt
        {
            /*!
                This object is the implementation in the pimpl idiom
            !*/

        public:

            bnjt_impl (
                const T& bn,
                const U& join_tree
            )
            {
                create_bayesian_network_join_tree(bn, join_tree, join_tree_values);

                cliques.resize(bn.number_of_nodes());

                // figure out which cliques contain each node
                for (unsigned long i = 0; i < cliques.size(); ++i)
                {
                    // find the smallest clique that contains node with index i
                    unsigned long smallest_clique = 0;
                    unsigned long size = std::numeric_limits<unsigned long>::max();

                    for (unsigned long n = 0; n < join_tree.number_of_nodes(); ++n)
                    {
                        if (join_tree.node(n).data.is_member(i) && join_tree.node(n).data.size() < size)
                        {
                            size = join_tree.node(n).data.size();
                            smallest_clique = n;
                        }
                    }

                    cliques[i] = smallest_clique;
                }
            }

            virtual const matrix<double,1> probability(
                unsigned long idx
            ) const 
            {
                join_tree_values.node(cliques[idx]).data.marginalize(idx, table);
                table.normalize();
                var.clear();
                var.add(idx);
                dist.set_size(table.size());

                // read the probabilities out of the table and into the row matrix
                for (unsigned long i = 0; i < table.size(); ++i)
                {
                    var[idx] = i;
                    dist(i) = table.probability(var); 
                }

                return dist;
            }

        private:

            graph< joint_probability_table, joint_probability_table >::kernel_1a_c join_tree_values;
            array<unsigned long> cliques;
            mutable joint_probability_table table;
            mutable assignment var;
            mutable matrix<double,1> dist;
           

        // ----------------------------------------------------------------------------------------

            template <typename set_type, typename node_type>
            bool set_contains_all_parents_of_node (
                const set_type& set,
                const node_type& node
            )
            {
                for (unsigned long i = 0; i < node.number_of_parents(); ++i)
                {
                    if (set.is_member(node.parent(i).index()) == false)
                        return false;
                }
                return true;
            }

        // ----------------------------------------------------------------------------------------

            template <
                typename V
                >
            void pass_join_tree_message (
                const U& join_tree,
                V& bn_join_tree ,
                unsigned long from,
                unsigned long to
            )
            {
                using namespace bayes_node_utils;
                const typename U::edge_type& e = edge(join_tree, from, to);
                typename V::edge_type& old_s = edge(bn_join_tree, from, to);

                typedef typename V::edge_type joint_prob_table;

                joint_prob_table new_s;
                bn_join_tree.node(from).data.marginalize(e, new_s);

                joint_probability_table temp(new_s);
                // divide new_s by old_s and store the result in temp.
                // if old_s is empty then that is the same as if it was all 1s
                // so we don't have to do this if that is the case.
                if (old_s.size() > 0)
                {
                    temp.reset();
                    old_s.reset();
                    while (temp.move_next())
                    {
                        old_s.move_next();
                        if (old_s.element().value() != 0)
                            temp.element().value()  /= old_s.element().value();
                    }
                }

                // now multiply temp by d and store the results in d
                joint_probability_table& d = bn_join_tree.node(to).data;
                d.reset();
                while (d.move_next())
                {
                    assignment a; 
                    const assignment& asrc = d.element().key();
                    asrc.reset();
                    while (asrc.move_next())
                    {
                        if (e.is_member(asrc.element().key()))
                            a.add(asrc.element().key(), asrc.element().value());
                    }

                    d.element().value() *= temp.probability(a);

                }

                // store new_s in old_s
                new_s.swap(old_s);

            }

        // ----------------------------------------------------------------------------------------

            template <
                typename V
                >
            void create_bayesian_network_join_tree (
                const T& bn,
                const U& join_tree,
                V& bn_join_tree 
            )
            /*!
                requires
                    - bn is a proper bayesian network
                    - join_tree is the join tree for that bayesian network
                ensures
                    - bn_join_tree == the output of the join tree algorithm for bayesian network inference.  
                      So each node in this graph contains a joint_probability_table for the clique
                      in the corresponding node in the join_tree graph.
            !*/
            {
                using namespace bayes_node_utils;
                bn_join_tree.clear();
                copy_graph_structure(join_tree, bn_join_tree);

                // we need to keep track of which node is "in" each clique for the purposes of 
                // initializing the tables in each clique.  So this vector will be used to do that
                // and a value of join_tree.number_of_nodes() means that the node with 
                // that index is unassigned.
                std::vector<unsigned long> node_assigned_to(bn.number_of_nodes(),join_tree.number_of_nodes());

                // populate evidence with all the evidence node indices and their values
                dlib::map<unsigned long, unsigned long>::kernel_1b_c evidence;
                for (unsigned long i = 0; i < bn.number_of_nodes(); ++i)
                {
                    if (node_is_evidence(bn, i))
                    {
                        unsigned long idx = i;
                        unsigned long value = node_value(bn, i);
                        evidence.add(idx,value);
                    }
                }


                // initialize the bn join tree
                for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i)
                {
                    bool contains_evidence = false;
                    std::vector<unsigned long> indices;
                    assignment value;

                    // loop over all the nodes in this clique in the join tree.  In this loop 
                    // we are making an assignment with all the values of the nodes it represents set to 0
                    join_tree.node(i).data.reset();
                    while (join_tree.node(i).data.move_next())
                    {
                        const unsigned long idx = join_tree.node(i).data.element();
                        indices.push_back(idx);
                        value.add(idx);

                        if (evidence.is_in_domain(join_tree.node(i).data.element()))
                            contains_evidence = true;
                    }

                    // now loop over all possible combinations of values that the nodes this 
                    // clique in the join tree can take on.  We do this by counting by one through all
                    // legal values
                    bool more_assignments = true;
                    while (more_assignments)
                    {
                        bn_join_tree.node(i).data.set_probability(value,1);

                        // account for any evidence
                        if (contains_evidence)
                        {
                            // loop over all the nodes in this cluster
                            for (unsigned long j = 0; j < indices.size(); ++j)
                            {
                                // if the current node is an evidence node
                                if (evidence.is_in_domain(indices[j]))
                                {
                                    const unsigned long idx = indices[j];
                                    const unsigned long evidence_value = evidence[idx];
                                    if (value[idx] != evidence_value)
                                        bn_join_tree.node(i).data.set_probability(value , 0);
                                }
                            }
                        }


                        // now check if any of the nodes in this cluster also have their parents in this cluster
                        join_tree.node(i).data.reset();
                        while (join_tree.node(i).data.move_next())
                        {
                            const unsigned long idx = join_tree.node(i).data.element();
                            // if this clique contains all the parents of this node and also hasn't
                            // been assigned to another clique
                            if (set_contains_all_parents_of_node(join_tree.node(i).data,  bn.node(idx)) && 
                                (i == node_assigned_to[idx] || node_assigned_to[idx] == join_tree.number_of_nodes()) )
                            {
                                // note that this node is now assigned to this clique 
                                node_assigned_to[idx] = i;
                                // node idx has all its parents in the cluster
                                assignment parent_values;
                                for (unsigned long j = 0; j < bn.node(idx).number_of_parents(); ++j)
                                {
                                    const unsigned long pidx = bn.node(idx).parent(j).index();
                                    parent_values.add(pidx, value[pidx]);
                                }

                                double temp = bn_join_tree.node(i).data.probability(value);
                                bn_join_tree.node(i).data.set_probability(value, temp * node_probability(bn, idx, value[idx], parent_values));

                            }
                        }


                        // now advance the value variable to its next possible state if there is one
                        more_assignments = false;
                        value.reset();
                        while (value.move_next())
                        {
                            value.element().value() += 1;
                            // if overflow
                            if (value.element().value() == node_num_values(bn, value.element().key()))
                            {
                                value.element().value() = 0;
                            }
                            else
                            {
                                more_assignments = true;
                                break;
                            }
                        }

                    } // end while (more_assignments) 
                } 




                // the tree is now initialized.  Now all we need to do is perform the propagation and
                // we are done
                dlib::array<dlib::set<unsigned long>::compare_1b_c> remaining_msg_to_send;
                dlib::array<dlib::set<unsigned long>::compare_1b_c> remaining_msg_to_receive;
                remaining_msg_to_receive.resize(join_tree.number_of_nodes());
                remaining_msg_to_send.resize(join_tree.number_of_nodes());
                for (unsigned long i = 0; i < remaining_msg_to_receive.size(); ++i)
                {
                    for (unsigned long j = 0; j < join_tree.node(i).number_of_neighbors(); ++j)
                    {
                        const unsigned long idx = join_tree.node(i).neighbor(j).index();
                        unsigned long temp;
                        temp = idx; remaining_msg_to_receive[i].add(temp);
                        temp = idx; remaining_msg_to_send[i].add(temp);
                    }
                }

                // now remaining_msg_to_receive[i] contains all the nodes that node i hasn't yet received
                // a message from.
                // we will consider node 0 to be the root node.


                bool message_sent = true;
                std::vector<unsigned long>::iterator iter;
                while (message_sent)
                {
                    message_sent = false;
                    for (unsigned long i = 1; i < remaining_msg_to_send.size(); ++i)
                    {
                        // if node i hasn't sent any messages but has received all but one then send a message to the one
                        // node who hasn't sent i a message
                        if (remaining_msg_to_send[i].size() == join_tree.node(i).number_of_neighbors() && remaining_msg_to_receive[i].size() == 1)
                        {
                            unsigned long to;
                            // get the last remaining thing from this set
                            remaining_msg_to_receive[i].remove_any(to);

                            // send the message
                            pass_join_tree_message(join_tree, bn_join_tree, i, to);

                            // record that we sent this message
                            remaining_msg_to_send[i].destroy(to);
                            remaining_msg_to_receive[to].destroy(i);

                            // put to back in since we still need to receive it
                            remaining_msg_to_receive[i].add(to);
                            message_sent = true;
                        }
                        else if (remaining_msg_to_receive[i].size() == 0 && remaining_msg_to_send[i].size() > 0)
                        {
                            unsigned long to;
                            remaining_msg_to_send[i].remove_any(to);
                            remaining_msg_to_receive[to].destroy(i);
                            pass_join_tree_message(join_tree, bn_join_tree, i, to);
                            message_sent = true;
                        }
                    }

                    if (remaining_msg_to_receive[0].size() == 0)
                    {
                        // send a message to all of the root nodes neighbors unless we have already sent out he messages
                        while (remaining_msg_to_send[0].size() > 0)
                        {
                            unsigned long to;
                            remaining_msg_to_send[0].remove_any(to);
                            remaining_msg_to_receive[to].destroy(0);
                            pass_join_tree_message(join_tree, bn_join_tree, 0, to);
                            message_sent = true;
                        }
                    }


                }

            }

        };
    }

    class bayesian_network_join_tree : noncopyable
    {
        /*!
            use the pimpl idiom to push the template arguments from the class level to the
            constructor level
        !*/

    public:

        template <
            typename T,
            typename U
            >
        bayesian_network_join_tree (
            const T& bn,
            const U& join_tree
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( bn.number_of_nodes() > 0 ,
                        "\tbayesian_network_join_tree::bayesian_network_join_tree(bn,join_tree)"
                        << "\n\tYou have given an invalid bayesian network"
                        << "\n\tthis:              " << this
                    );

            DLIB_ASSERT( is_join_tree(bn, join_tree) == true ,
                        "\tbayesian_network_join_tree::bayesian_network_join_tree(bn,join_tree)"
                        << "\n\tYou have given an invalid join tree for the supplied bayesian network"
                        << "\n\tthis:              " << this
                    );
            DLIB_ASSERT( graph_contains_length_one_cycle(bn) == false,
                        "\tbayesian_network_join_tree::bayesian_network_join_tree(bn,join_tree)"
                        << "\n\tYou have given an invalid bayesian network"
                        << "\n\tthis:              " << this
                    );
            DLIB_ASSERT( graph_is_connected(bn) == true,
                        "\tbayesian_network_join_tree::bayesian_network_join_tree(bn,join_tree)"
                        << "\n\tYou have given an invalid bayesian network"
                        << "\n\tthis:              " << this
                    );

#ifdef ENABLE_ASSERTS
            for (unsigned long i = 0; i < bn.number_of_nodes(); ++i)
            {
                DLIB_ASSERT(bayes_node_utils::node_cpt_filled_out(bn,i) == true,
                        "\tbayesian_network_join_tree::bayesian_network_join_tree(bn,join_tree)"
                        << "\n\tYou have given an invalid bayesian network. "
                        << "\n\tYou must finish filling out the conditional_probability_table of node " << i
                        << "\n\tthis:              " << this
                    );
            }
#endif

            impl.reset(new bayesian_network_join_tree_helpers::bnjt_impl<T,U>(bn, join_tree));
            num_nodes = bn.number_of_nodes();
        }

        const matrix<double,1> probability(
            unsigned long idx
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT( idx < number_of_nodes() ,
                        "\tconst matrix<double,1> bayesian_network_join_tree::probability(idx)"
                        << "\n\tYou have specified an invalid node index"
                        << "\n\tidx:               " << idx 
                        << "\n\tnumber_of_nodes(): " << number_of_nodes() 
                        << "\n\tthis:              " << this
                    );

            return impl->probability(idx);
        }

        unsigned long number_of_nodes (
        ) const { return num_nodes; }

        void swap (
            bayesian_network_join_tree& item
        )
        {
            exchange(num_nodes, item.num_nodes);
            impl.swap(item.impl);
        }

    private:

        std::unique_ptr<bayesian_network_join_tree_helpers::bnjt> impl;
        unsigned long num_nodes;

    };

    inline void swap (
        bayesian_network_join_tree& a,
        bayesian_network_join_tree& b
    ) { a.swap(b); }

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_BAYES_UTILs_