File size: 26,369 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example shows how to train a instance segmentation net using the PASCAL VOC2012
dataset. For an introduction to what segmentation is, see the accompanying header file
dnn_instance_segmentation_ex.h.
Instructions how to run the example:
1. Download the PASCAL VOC2012 data, and untar it somewhere.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
2. Build the dnn_instance_segmentation_train_ex example program.
3. Run:
./dnn_instance_segmentation_train_ex /path/to/VOC2012
4. Wait while the network is being trained.
5. Build the dnn_instance_segmentation_ex example program.
6. Run:
./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp, dnn_introduction2_ex.cpp,
and dnn_semantic_segmentation_train_ex.cpp before reading this example program.
*/
#include "dnn_instance_segmentation_ex.h"
#include "pascal_voc_2012.h"
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/dir_nav.h>
#include <iterator>
#include <thread>
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#include <execution>
#endif // __cplusplus >= 201703L
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// A single training sample for detection. A mini-batch comprises many of these.
struct det_training_sample
{
matrix<rgb_pixel> input_image;
std::vector<dlib::mmod_rect> mmod_rects;
};
// A single training sample for segmentation. A mini-batch comprises many of these.
struct seg_training_sample
{
matrix<rgb_pixel> input_image;
matrix<float> label_image; // The ground-truth label of each pixel. (+1 or -1)
};
// ----------------------------------------------------------------------------------------
bool is_instance_pixel(const dlib::rgb_pixel& rgb_label)
{
if (rgb_label == dlib::rgb_pixel(0, 0, 0))
return false; // Background
if (rgb_label == dlib::rgb_pixel(224, 224, 192))
return false; // The cream-colored `void' label is used in border regions and to mask difficult objects
return true;
}
// Provide hash function for dlib::rgb_pixel
namespace std {
template <>
struct hash<dlib::rgb_pixel>
{
std::size_t operator()(const dlib::rgb_pixel& p) const
{
return (static_cast<uint32_t>(p.red) << 16)
| (static_cast<uint32_t>(p.green) << 8)
| (static_cast<uint32_t>(p.blue));
}
};
}
struct truth_instance
{
dlib::rgb_pixel rgb_label;
dlib::mmod_rect mmod_rect;
};
std::vector<truth_instance> rgb_label_images_to_truth_instances(
const dlib::matrix<dlib::rgb_pixel>& instance_label_image,
const dlib::matrix<dlib::rgb_pixel>& class_label_image
)
{
std::unordered_map<dlib::rgb_pixel, mmod_rect> result_map;
DLIB_CASSERT(instance_label_image.nr() == class_label_image.nr());
DLIB_CASSERT(instance_label_image.nc() == class_label_image.nc());
const auto nr = instance_label_image.nr();
const auto nc = instance_label_image.nc();
for (int r = 0; r < nr; ++r)
{
for (int c = 0; c < nc; ++c)
{
const auto rgb_instance_label = instance_label_image(r, c);
if (!is_instance_pixel(rgb_instance_label))
continue;
const auto rgb_class_label = class_label_image(r, c);
const Voc2012class& voc2012_class = find_voc2012_class(rgb_class_label);
const auto i = result_map.find(rgb_instance_label);
if (i == result_map.end())
{
// Encountered a new instance
result_map[rgb_instance_label] = rectangle(c, r, c, r);
result_map[rgb_instance_label].label = voc2012_class.classlabel;
}
else
{
// Not the first occurrence - update the rect
auto& rect = i->second.rect;
if (c < rect.left())
rect.set_left(c);
else if (c > rect.right())
rect.set_right(c);
if (r > rect.bottom())
rect.set_bottom(r);
DLIB_CASSERT(i->second.label == voc2012_class.classlabel);
}
}
}
std::vector<truth_instance> flat_result;
flat_result.reserve(result_map.size());
for (const auto& i : result_map) {
flat_result.push_back(truth_instance{
i.first, i.second
});
}
return flat_result;
}
// ----------------------------------------------------------------------------------------
struct truth_image
{
image_info info;
std::vector<truth_instance> truth_instances;
};
std::vector<mmod_rect> extract_mmod_rects(
const std::vector<truth_instance>& truth_instances
)
{
std::vector<mmod_rect> mmod_rects(truth_instances.size());
std::transform(
truth_instances.begin(),
truth_instances.end(),
mmod_rects.begin(),
[](const truth_instance& truth) { return truth.mmod_rect; }
);
return mmod_rects;
}
std::vector<std::vector<mmod_rect>> extract_mmod_rect_vectors(
const std::vector<truth_image>& truth_images
)
{
std::vector<std::vector<mmod_rect>> mmod_rects(truth_images.size());
const auto extract_mmod_rects_from_truth_image = [](const truth_image& truth_image)
{
return extract_mmod_rects(truth_image.truth_instances);
};
std::transform(
truth_images.begin(),
truth_images.end(),
mmod_rects.begin(),
extract_mmod_rects_from_truth_image
);
return mmod_rects;
}
det_bnet_type train_detection_network(
const std::vector<truth_image>& truth_images,
unsigned int det_minibatch_size
)
{
const double initial_learning_rate = 0.1;
const double weight_decay = 0.0001;
const double momentum = 0.9;
const double min_detector_window_overlap_iou = 0.65;
const int target_size = 70;
const int min_target_size = 30;
mmod_options options(
extract_mmod_rect_vectors(truth_images),
target_size, min_target_size,
min_detector_window_overlap_iou
);
options.overlaps_ignore = test_box_overlap(0.5, 0.9);
det_bnet_type det_net(options);
det_net.subnet().layer_details().set_num_filters(options.detector_windows.size());
dlib::pipe<det_training_sample> data(200);
auto f = [&data, &truth_images, target_size, min_target_size](time_t seed)
{
dlib::rand rnd(time(0) + seed);
matrix<rgb_pixel> input_image;
random_cropper cropper;
cropper.set_seed(time(0));
cropper.set_chip_dims(350, 350);
// Usually you want to give the cropper whatever min sizes you passed to the
// mmod_options constructor, or very slightly smaller sizes, which is what we do here.
cropper.set_min_object_size(target_size - 2, min_target_size - 2);
cropper.set_max_rotation_degrees(2);
det_training_sample temp;
while (data.is_enabled())
{
// Pick a random input image.
const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
const auto& truth_image = truth_images[random_index];
// Load the input image.
load_image(input_image, truth_image.info.image_filename);
// Get a random crop of the input.
const auto mmod_rects = extract_mmod_rects(truth_image.truth_instances);
cropper(input_image, mmod_rects, temp.input_image, temp.mmod_rects);
disturb_colors(temp.input_image, rnd);
// Push the result to be used by the trainer.
data.enqueue(temp);
}
};
std::thread data_loader1([f]() { f(1); });
std::thread data_loader2([f]() { f(2); });
std::thread data_loader3([f]() { f(3); });
std::thread data_loader4([f]() { f(4); });
const auto stop_data_loaders = [&]()
{
data.disable();
data_loader1.join();
data_loader2.join();
data_loader3.join();
data_loader4.join();
};
dnn_trainer<det_bnet_type> det_trainer(det_net, sgd(weight_decay, momentum));
try
{
det_trainer.be_verbose();
det_trainer.set_learning_rate(initial_learning_rate);
det_trainer.set_synchronization_file("pascal_voc2012_det_trainer_state_file.dat", std::chrono::minutes(10));
det_trainer.set_iterations_without_progress_threshold(5000);
// Output training parameters.
cout << det_trainer << endl;
std::vector<matrix<rgb_pixel>> samples;
std::vector<std::vector<mmod_rect>> labels;
// The main training loop. Keep making mini-batches and giving them to the trainer.
// We will run until the learning rate becomes small enough.
while (det_trainer.get_learning_rate() >= 1e-4)
{
samples.clear();
labels.clear();
// make a mini-batch
det_training_sample temp;
while (samples.size() < det_minibatch_size)
{
data.dequeue(temp);
samples.push_back(std::move(temp.input_image));
labels.push_back(std::move(temp.mmod_rects));
}
det_trainer.train_one_step(samples, labels);
}
}
catch (std::exception&)
{
stop_data_loaders();
throw;
}
// Training done, tell threads to stop and make sure to wait for them to finish before
// moving on.
stop_data_loaders();
// also wait for threaded processing to stop in the trainer.
det_trainer.get_net();
det_net.clean();
return det_net;
}
// ----------------------------------------------------------------------------------------
matrix<float> keep_only_current_instance(const matrix<rgb_pixel>& rgb_label_image, const rgb_pixel rgb_label)
{
const auto nr = rgb_label_image.nr();
const auto nc = rgb_label_image.nc();
matrix<float> result(nr, nc);
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
const auto& index = rgb_label_image(r, c);
if (index == rgb_label)
result(r, c) = +1;
else if (index == dlib::rgb_pixel(224, 224, 192))
result(r, c) = 0;
else
result(r, c) = -1;
}
}
return result;
}
seg_bnet_type train_segmentation_network(
const std::vector<truth_image>& truth_images,
unsigned int seg_minibatch_size,
const std::string& classlabel
)
{
seg_bnet_type seg_net;
const double initial_learning_rate = 0.1;
const double weight_decay = 0.0001;
const double momentum = 0.9;
const std::string synchronization_file_name
= "pascal_voc2012_seg_trainer_state_file"
+ (classlabel.empty() ? "" : ("_" + classlabel))
+ ".dat";
dnn_trainer<seg_bnet_type> seg_trainer(seg_net, sgd(weight_decay, momentum));
seg_trainer.be_verbose();
seg_trainer.set_learning_rate(initial_learning_rate);
seg_trainer.set_synchronization_file(synchronization_file_name, std::chrono::minutes(10));
seg_trainer.set_iterations_without_progress_threshold(2000);
set_all_bn_running_stats_window_sizes(seg_net, 1000);
// Output training parameters.
cout << seg_trainer << endl;
std::vector<matrix<rgb_pixel>> samples;
std::vector<matrix<float>> labels;
// Start a bunch of threads that read images from disk and pull out random crops. It's
// important to be sure to feed the GPU fast enough to keep it busy. Using multiple
// thread for this kind of data preparation helps us do that. Each thread puts the
// crops into the data queue.
dlib::pipe<seg_training_sample> data(200);
auto f = [&data, &truth_images](time_t seed)
{
dlib::rand rnd(time(0) + seed);
matrix<rgb_pixel> input_image;
matrix<rgb_pixel> rgb_label_image;
matrix<rgb_pixel> rgb_label_chip;
seg_training_sample temp;
while (data.is_enabled())
{
// Pick a random input image.
const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
const auto& truth_image = truth_images[random_index];
const auto image_truths = truth_image.truth_instances;
if (!image_truths.empty())
{
const image_info& info = truth_image.info;
// Load the input image.
load_image(input_image, info.image_filename);
// Load the ground-truth (RGB) instance labels.
load_image(rgb_label_image, info.instance_label_filename);
// Pick a random training instance.
const auto& truth_instance = image_truths[rnd.get_random_32bit_number() % image_truths.size()];
const auto& truth_rect = truth_instance.mmod_rect.rect;
const auto cropping_rect = get_cropping_rect(truth_rect);
// Pick a random crop around the instance.
const auto max_x_translate_amount = static_cast<long>(truth_rect.width() / 10.0);
const auto max_y_translate_amount = static_cast<long>(truth_rect.height() / 10.0);
const auto random_translate = point(
rnd.get_integer_in_range(-max_x_translate_amount, max_x_translate_amount + 1),
rnd.get_integer_in_range(-max_y_translate_amount, max_y_translate_amount + 1)
);
const rectangle random_rect(
cropping_rect.left() + random_translate.x(),
cropping_rect.top() + random_translate.y(),
cropping_rect.right() + random_translate.x(),
cropping_rect.bottom() + random_translate.y()
);
const chip_details chip_details(random_rect, chip_dims(seg_dim, seg_dim));
// Crop the input image.
extract_image_chip(input_image, chip_details, temp.input_image, interpolate_bilinear());
disturb_colors(temp.input_image, rnd);
// Crop the labels correspondingly. However, note that here bilinear
// interpolation would make absolutely no sense - you wouldn't say that
// a bicycle is half-way between an aeroplane and a bird, would you?
extract_image_chip(rgb_label_image, chip_details, rgb_label_chip, interpolate_nearest_neighbor());
// Clear pixels not related to the current instance.
temp.label_image = keep_only_current_instance(rgb_label_chip, truth_instance.rgb_label);
// Push the result to be used by the trainer.
data.enqueue(temp);
}
else
{
// TODO: use background samples as well
}
}
};
std::thread data_loader1([f]() { f(1); });
std::thread data_loader2([f]() { f(2); });
std::thread data_loader3([f]() { f(3); });
std::thread data_loader4([f]() { f(4); });
const auto stop_data_loaders = [&]()
{
data.disable();
data_loader1.join();
data_loader2.join();
data_loader3.join();
data_loader4.join();
};
try
{
// The main training loop. Keep making mini-batches and giving them to the trainer.
// We will run until the learning rate has dropped by a factor of 1e-4.
while (seg_trainer.get_learning_rate() >= 1e-4)
{
samples.clear();
labels.clear();
// make a mini-batch
seg_training_sample temp;
while (samples.size() < seg_minibatch_size)
{
data.dequeue(temp);
samples.push_back(std::move(temp.input_image));
labels.push_back(std::move(temp.label_image));
}
seg_trainer.train_one_step(samples, labels);
}
}
catch (std::exception&)
{
stop_data_loaders();
throw;
}
// Training done, tell threads to stop and make sure to wait for them to finish before
// moving on.
stop_data_loaders();
// also wait for threaded processing to stop in the trainer.
seg_trainer.get_net();
seg_net.clean();
return seg_net;
}
// ----------------------------------------------------------------------------------------
int ignore_overlapped_boxes(
std::vector<truth_instance>& truth_instances,
const test_box_overlap& overlaps
)
/*!
ensures
- Whenever two rectangles in boxes overlap, according to overlaps(), we set the
smallest box to ignore.
- returns the number of newly ignored boxes.
!*/
{
int num_ignored = 0;
for (size_t i = 0, end = truth_instances.size(); i < end; ++i)
{
auto& box_i = truth_instances[i].mmod_rect;
if (box_i.ignore)
continue;
for (size_t j = i+1; j < end; ++j)
{
auto& box_j = truth_instances[j].mmod_rect;
if (box_j.ignore)
continue;
if (overlaps(box_i, box_j))
{
++num_ignored;
if(box_i.rect.area() < box_j.rect.area())
box_i.ignore = true;
else
box_j.ignore = true;
}
}
}
return num_ignored;
}
std::vector<truth_instance> load_truth_instances(const image_info& info)
{
matrix<rgb_pixel> instance_label_image;
matrix<rgb_pixel> class_label_image;
load_image(instance_label_image, info.instance_label_filename);
load_image(class_label_image, info.class_label_filename);
return rgb_label_images_to_truth_instances(instance_label_image, class_label_image);
}
std::vector<std::vector<truth_instance>> load_all_truth_instances(const std::vector<image_info>& listing)
{
std::vector<std::vector<truth_instance>> truth_instances(listing.size());
std::transform(
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
std::execution::par,
#endif // __cplusplus >= 201703L
listing.begin(),
listing.end(),
truth_instances.begin(),
load_truth_instances
);
return truth_instances;
}
// ----------------------------------------------------------------------------------------
std::vector<truth_image> filter_based_on_classlabel(
const std::vector<truth_image>& truth_images,
const std::vector<std::string>& desired_classlabels
)
{
std::vector<truth_image> result;
const auto represents_desired_class = [&desired_classlabels](const truth_instance& truth_instance) {
return std::find(
desired_classlabels.begin(),
desired_classlabels.end(),
truth_instance.mmod_rect.label
) != desired_classlabels.end();
};
for (const auto& input : truth_images)
{
const auto has_desired_class = std::any_of(
input.truth_instances.begin(),
input.truth_instances.end(),
represents_desired_class
);
if (has_desired_class) {
// NB: This keeps only MMOD rects belonging to any of the desired classes.
// A reasonable alternative could be to keep all rects, but mark those
// belonging in other classes to be ignored during training.
std::vector<truth_instance> temp;
std::copy_if(
input.truth_instances.begin(),
input.truth_instances.end(),
std::back_inserter(temp),
represents_desired_class
);
result.push_back(truth_image{ input.info, temp });
}
}
return result;
}
// Ignore truth boxes that overlap too much, are too small, or have a large aspect ratio.
void ignore_some_truth_boxes(std::vector<truth_image>& truth_images)
{
for (auto& i : truth_images)
{
auto& truth_instances = i.truth_instances;
ignore_overlapped_boxes(truth_instances, test_box_overlap(0.90, 0.95));
for (auto& truth : truth_instances)
{
if (truth.mmod_rect.ignore)
continue;
const auto& rect = truth.mmod_rect.rect;
constexpr unsigned long min_width = 35;
constexpr unsigned long min_height = 35;
if (rect.width() < min_width && rect.height() < min_height)
{
truth.mmod_rect.ignore = true;
continue;
}
constexpr double max_aspect_ratio_width_to_height = 3.0;
constexpr double max_aspect_ratio_height_to_width = 1.5;
const double aspect_ratio_width_to_height = rect.width() / static_cast<double>(rect.height());
const double aspect_ratio_height_to_width = 1.0 / aspect_ratio_width_to_height;
const bool is_aspect_ratio_too_large
= aspect_ratio_width_to_height > max_aspect_ratio_width_to_height
|| aspect_ratio_height_to_width > max_aspect_ratio_height_to_width;
if (is_aspect_ratio_too_large)
truth.mmod_rect.ignore = true;
}
}
}
// Filter images that have no (non-ignored) truth
std::vector<truth_image> filter_images_with_no_truth(const std::vector<truth_image>& truth_images)
{
std::vector<truth_image> result;
for (const auto& truth_image : truth_images)
{
const auto ignored = [](const truth_instance& truth) { return truth.mmod_rect.ignore; };
const auto& truth_instances = truth_image.truth_instances;
if (!std::all_of(truth_instances.begin(), truth_instances.end(), ignored))
result.push_back(truth_image);
}
return result;
}
int main(int argc, char** argv) try
{
if (argc < 2)
{
cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
cout << endl;
cout << "You call this program like this: " << endl;
cout << "./dnn_instance_segmentation_train_ex /path/to/VOC2012 [det-minibatch-size] [seg-minibatch-size] [class-1] [class-2] [class-3] ..." << endl;
return 1;
}
cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;
const auto listing = get_pascal_voc2012_train_listing(argv[1]);
cout << "images in entire dataset: " << listing.size() << endl;
if (listing.size() == 0)
{
cout << "Didn't find the VOC2012 dataset. " << endl;
return 1;
}
// mini-batches smaller than the default can be used with GPUs having less memory
const unsigned int det_minibatch_size = argc >= 3 ? std::stoi(argv[2]) : 35;
const unsigned int seg_minibatch_size = argc >= 4 ? std::stoi(argv[3]) : 100;
cout << "det mini-batch size: " << det_minibatch_size << endl;
cout << "seg mini-batch size: " << seg_minibatch_size << endl;
std::vector<std::string> desired_classlabels;
for (int arg = 4; arg < argc; ++arg)
desired_classlabels.push_back(argv[arg]);
if (desired_classlabels.empty())
{
desired_classlabels.push_back("bicycle");
desired_classlabels.push_back("car");
desired_classlabels.push_back("cat");
}
cout << "desired classlabels:";
for (const auto& desired_classlabel : desired_classlabels)
cout << " " << desired_classlabel;
cout << endl;
// extract the MMOD rects
cout << endl << "Extracting all truth instances...";
const auto truth_instances = load_all_truth_instances(listing);
cout << " Done!" << endl << endl;
DLIB_CASSERT(listing.size() == truth_instances.size());
std::vector<truth_image> original_truth_images;
for (size_t i = 0, end = listing.size(); i < end; ++i)
{
original_truth_images.push_back(truth_image{
listing[i], truth_instances[i]
});
}
auto truth_images_filtered_by_class = filter_based_on_classlabel(original_truth_images, desired_classlabels);
cout << "images in dataset filtered by class: " << truth_images_filtered_by_class.size() << endl;
ignore_some_truth_boxes(truth_images_filtered_by_class);
const auto truth_images = filter_images_with_no_truth(truth_images_filtered_by_class);
cout << "images in dataset after ignoring some truth boxes: " << truth_images.size() << endl;
// First train an object detector network (loss_mmod).
cout << endl << "Training detector network:" << endl;
const auto det_net = train_detection_network(truth_images, det_minibatch_size);
// Then train mask predictors (segmentation).
std::map<std::string, seg_bnet_type> seg_nets_by_class;
// This flag controls if a separate mask predictor is trained for each class.
// Note that it would also be possible to train a separate mask predictor for
// class groups, each containing somehow similar classes -- for example, one
// mask predictor for cars and buses, another for cats and dogs, and so on.
constexpr bool separate_seg_net_for_each_class = true;
if (separate_seg_net_for_each_class)
{
for (const auto& classlabel : desired_classlabels)
{
// Consider only the truth images belonging to this class.
const auto class_images = filter_based_on_classlabel(truth_images, { classlabel });
cout << endl << "Training segmentation network for class " << classlabel << ":" << endl;
seg_nets_by_class[classlabel] = train_segmentation_network(class_images, seg_minibatch_size, classlabel);
}
}
else
{
cout << "Training a single segmentation network:" << endl;
seg_nets_by_class[""] = train_segmentation_network(truth_images, seg_minibatch_size, "");
}
cout << "Saving networks" << endl;
serialize(instance_segmentation_net_filename) << det_net << seg_nets_by_class;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}
|