File size: 9,719 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
// Copyright (C) 2017 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_UPPER_bOUND_FUNCTION_Hh_
#define DLIB_UPPER_bOUND_FUNCTION_Hh_
#include "upper_bound_function_abstract.h"
#include "../svm/svm_c_linear_dcd_trainer.h"
#include "../statistics.h"
#include <limits>
#include <utility>
namespace dlib
{
// ----------------------------------------------------------------------------------------
struct function_evaluation
{
function_evaluation() = default;
function_evaluation(const matrix<double,0,1>& x, double y) :x(x), y(y) {}
matrix<double,0,1> x;
double y = std::numeric_limits<double>::quiet_NaN();
};
// ----------------------------------------------------------------------------------------
class upper_bound_function
{
public:
upper_bound_function(
) = default;
upper_bound_function(
const double relative_noise_magnitude,
const double solver_eps
) : relative_noise_magnitude(relative_noise_magnitude), solver_eps(solver_eps)
{
DLIB_CASSERT(relative_noise_magnitude >= 0);
DLIB_CASSERT(solver_eps > 0);
}
explicit upper_bound_function(
const std::vector<function_evaluation>& _points,
const double relative_noise_magnitude = 0.001,
const double solver_eps = 0.0001
) : relative_noise_magnitude(relative_noise_magnitude), solver_eps(solver_eps), points(_points)
{
DLIB_CASSERT(relative_noise_magnitude >= 0);
DLIB_CASSERT(solver_eps > 0);
if (points.size() > 1)
{
DLIB_CASSERT(points[0].x.size() > 0, "The vectors can't be empty.");
const long dims = points[0].x.size();
for (auto& p : points)
DLIB_CASSERT(p.x.size() == dims, "All the vectors given to upper_bound_function must have the same dimensionality.");
learn_params();
}
}
void add (
const function_evaluation& point
)
{
DLIB_CASSERT(point.x.size() != 0, "The vectors can't be empty.");
if (points.size() == 0)
{
points.push_back(point);
return;
}
DLIB_CASSERT(point.x.size() == dimensionality(), "All the vectors given to upper_bound_function must have the same dimensionality.");
if (points.size() < 4)
{
points.push_back(point);
*this = upper_bound_function(points, relative_noise_magnitude, solver_eps);
return;
}
points.push_back(point);
// add constraints between the new point and the old points
for (size_t i = 0; i < points.size()-1; ++i)
active_constraints.push_back(std::make_pair(i,points.size()-1));
learn_params();
}
long num_points(
) const
{
return points.size();
}
long dimensionality(
) const
{
if (points.size() == 0)
return 0;
else
return points[0].x.size();
}
const std::vector<function_evaluation>& get_points(
) const
{
return points;
}
double operator() (
const matrix<double,0,1>& x
) const
{
DLIB_CASSERT(num_points() > 0);
DLIB_CASSERT(x.size() == dimensionality());
double upper_bound = std::numeric_limits<double>::infinity();
for (size_t i = 0; i < points.size(); ++i)
{
const double local_bound = points[i].y + std::sqrt(offsets[i] + dot(slopes, squared(x-points[i].x)));
upper_bound = std::min(upper_bound, local_bound);
}
return upper_bound;
}
private:
void learn_params (
)
{
const long dims = points[0].x.size();
using sample_type = std::vector<std::pair<size_t,double>>;
using kernel_type = sparse_linear_kernel<sample_type>;
std::vector<sample_type> x;
std::vector<double> y;
// We are going to normalize the data so the values aren't extreme. First, we
// collect statistics on our data.
std::vector<running_stats<double>> x_rs(dims);
running_stats<double> y_rs;
for (auto& v : points)
{
for (long i = 0; i < v.x.size(); ++i)
x_rs[i].add(v.x(i));
y_rs.add(v.y);
}
// compute normalization vectors for the data. The only reason we do this is
// to make the optimization well conditioned. In particular, scaling the y
// values will prevent numerical errors in the 1-diff*diff computation below that
// would otherwise result when diff is really big. Also, scaling the xvalues
// to be about 1 will similarly make the optimization more stable and it also
// has the added benefit of keeping the relative_noise_magnitude's scale
// constant regardless of the size of x values.
const double yscale = 1.0/y_rs.stddev();
std::vector<double> xscale(dims);
for (size_t i = 0; i < xscale.size(); ++i)
xscale[i] = 1.0/(x_rs[i].stddev()*yscale); // make it so that xscale[i]*yscale == 1/x_rs[i].stddev()
sample_type samp;
auto add_constraint = [&](long i, long j) {
samp.clear();
for (long k = 0; k < dims; ++k)
{
double temp = (points[i].x(k) - points[j].x(k))*xscale[k]*yscale;
samp.push_back(std::make_pair(k, temp*temp));
}
if (points[i].y > points[j].y)
samp.push_back(std::make_pair(dims + j, relative_noise_magnitude));
else
samp.push_back(std::make_pair(dims + i, relative_noise_magnitude));
const double diff = (points[i].y - points[j].y)*yscale;
samp.push_back(std::make_pair(dims + points.size(), 1-diff*diff));
x.push_back(samp);
y.push_back(1);
};
if (active_constraints.size() == 0)
{
x.reserve(points.size()*(points.size()-1)/2);
y.reserve(points.size()*(points.size()-1)/2);
for (size_t i = 0; i < points.size(); ++i)
{
for (size_t j = i+1; j < points.size(); ++j)
{
add_constraint(i,j);
}
}
}
else
{
for (auto& p : active_constraints)
add_constraint(p.first, p.second);
}
svm_c_linear_dcd_trainer<kernel_type> trainer;
trainer.set_c(std::numeric_limits<double>::infinity());
//trainer.be_verbose();
trainer.force_last_weight_to_1(true);
trainer.set_epsilon(solver_eps);
svm_c_linear_dcd_trainer<kernel_type>::optimizer_state state;
auto df = trainer.train(x,y, state);
// save the active constraints for later so we can use them inside add() to add
// new points efficiently.
if (active_constraints.size() == 0)
{
long k = 0;
for (size_t i = 0; i < points.size(); ++i)
{
for (size_t j = i+1; j < points.size(); ++j)
{
if (state.get_alpha()[k++] != 0)
active_constraints.push_back(std::make_pair(i,j));
}
}
}
else
{
DLIB_CASSERT(state.get_alpha().size() == active_constraints.size());
new_active_constraints.clear();
for (size_t i = 0; i < state.get_alpha().size(); ++i)
{
if (state.get_alpha()[i] != 0)
new_active_constraints.push_back(active_constraints[i]);
}
active_constraints.swap(new_active_constraints);
}
//std::cout << "points.size(): " << points.size() << std::endl;
//std::cout << "active_constraints.size(): " << active_constraints.size() << std::endl;
const auto& bv = df.basis_vectors(0);
slopes.set_size(dims);
for (long i = 0; i < dims; ++i)
slopes(i) = bv[i].second*xscale[i]*xscale[i];
//std::cout << "slopes:" << trans(slopes);
offsets.assign(points.size(),0);
for (size_t i = 0; i < points.size(); ++i)
{
offsets[i] += bv[slopes.size()+i].second*relative_noise_magnitude;
}
}
double relative_noise_magnitude = 0.001;
double solver_eps = 0.0001;
std::vector<std::pair<size_t,size_t>> active_constraints, new_active_constraints;
std::vector<function_evaluation> points;
std::vector<double> offsets; // offsets.size() == points.size()
matrix<double,0,1> slopes; // slopes.size() == points[0].first.size()
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_UPPER_bOUND_FUNCTION_Hh_
|