File size: 10,741 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
    Instance segmentation using the PASCAL VOC2012 dataset.

    Instance segmentation sort-of combines object detection with semantic
    segmentation. While each dog, for example, is detected separately,
    the output is not only a bounding-box but a more accurate, per-pixel
    mask.

    For introductions to object detection and semantic segmentation, you
    can have a look at dnn_mmod_ex.cpp and dnn_semantic_segmentation.h,
    respectively.

    Instructions how to run the example:
    1. Download the PASCAL VOC2012 data, and untar it somewhere.
       http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    2. Build the dnn_instance_segmentation_train_ex example program.
    3. Run:
       ./dnn_instance_segmentation_train_ex /path/to/VOC2012
    4. Wait while the network is being trained.
    5. Build the dnn_instance_segmentation_ex example program.
    6. Run:
       ./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images

    An alternative to steps 2-4 above is to download a pre-trained network
    from here: http://dlib.net/files/instance_segmentation_voc2012net_v2.dnn

    It would be a good idea to become familiar with dlib's DNN tooling before reading this
    example.  So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
    before reading this example program.
*/

#ifndef DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_
#define DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_

#include <dlib/dnn.h>

// ----------------------------------------------------------------------------------------

namespace {
    // Segmentation will be performed using patches having this size.
    constexpr int seg_dim = 227;
}

dlib::rectangle get_cropping_rect(const dlib::rectangle& rectangle)
{
    DLIB_ASSERT(!rectangle.is_empty());

    const auto center_point = dlib::center(rectangle);
    const auto max_dim = std::max(rectangle.width(), rectangle.height());
    const auto d = static_cast<long>(std::round(max_dim / 2.0 * 1.5)); // add +50%

    return dlib::rectangle(
        center_point.x() - d,
        center_point.y() - d,
        center_point.x() + d,
        center_point.y() + d
    );
}

// ----------------------------------------------------------------------------------------

// The object detection network.
// Adapted from dnn_mmod_train_find_cars_ex.cpp and friends.

template <long num_filters, typename SUBNET> using con5d = dlib::con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5  = dlib::con<num_filters,5,5,1,1,SUBNET>;

template <typename SUBNET> using bdownsampler = dlib::relu<dlib::bn_con<con5d<128,dlib::relu<dlib::bn_con<con5d<128,dlib::relu<dlib::bn_con<con5d<32,SUBNET>>>>>>>>>;
template <typename SUBNET> using adownsampler = dlib::relu<dlib::affine<con5d<128,dlib::relu<dlib::affine<con5d<128,dlib::relu<dlib::affine<con5d<32,SUBNET>>>>>>>>>;

template <typename SUBNET> using brcon5 = dlib::relu<dlib::bn_con<con5<256,SUBNET>>>;
template <typename SUBNET> using arcon5 = dlib::relu<dlib::affine<con5<256,SUBNET>>>;

using det_bnet_type = dlib::loss_mmod<dlib::con<1,9,9,1,1,brcon5<brcon5<brcon5<bdownsampler<dlib::input_rgb_image_pyramid<dlib::pyramid_down<6>>>>>>>>;
using det_anet_type = dlib::loss_mmod<dlib::con<1,9,9,1,1,arcon5<arcon5<arcon5<adownsampler<dlib::input_rgb_image_pyramid<dlib::pyramid_down<6>>>>>>>>;

// The segmentation network.
// For the time being, this is very much copy-paste from dnn_semantic_segmentation.h, although the network is made narrower (smaller feature maps).

template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<dlib::con<N,3,3,1,1,dlib::relu<BN<dlib::con<N,3,3,stride,stride,SUBNET>>>>>;

template <int N, template <typename> class BN, int stride, typename SUBNET>
using blockt = BN<dlib::cont<N,3,3,1,1,dlib::relu<BN<dlib::cont<N,3,3,stride,stride,SUBNET>>>>>;

template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = dlib::add_prev1<block<N,BN,1,dlib::tag1<SUBNET>>>;

template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = dlib::add_prev2<dlib::avg_pool<2,2,2,2,dlib::skip1<dlib::tag2<block<N,BN,2,dlib::tag1<SUBNET>>>>>>;

template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_up = dlib::add_prev2<dlib::cont<N,2,2,2,2,dlib::skip1<dlib::tag2<blockt<N,BN,2,dlib::tag1<SUBNET>>>>>>;

template <int N, typename SUBNET> using res       = dlib::relu<residual<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares      = dlib::relu<residual<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_down  = dlib::relu<residual_down<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_down = dlib::relu<residual_down<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_up    = dlib::relu<residual_up<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_up   = dlib::relu<residual_up<block,N,dlib::affine,SUBNET>>;

// ----------------------------------------------------------------------------------------

template <typename SUBNET> using res16 = res<16,SUBNET>;
template <typename SUBNET> using res24 = res<24,SUBNET>;
template <typename SUBNET> using res32 = res<32,SUBNET>;
template <typename SUBNET> using res48 = res<48,SUBNET>;
template <typename SUBNET> using ares16 = ares<16,SUBNET>;
template <typename SUBNET> using ares24 = ares<24,SUBNET>;
template <typename SUBNET> using ares32 = ares<32,SUBNET>;
template <typename SUBNET> using ares48 = ares<48,SUBNET>;

template <typename SUBNET> using level1 = dlib::repeat<2,res16,res<16,SUBNET>>;
template <typename SUBNET> using level2 = dlib::repeat<2,res24,res_down<24,SUBNET>>;
template <typename SUBNET> using level3 = dlib::repeat<2,res32,res_down<32,SUBNET>>;
template <typename SUBNET> using level4 = dlib::repeat<2,res48,res_down<48,SUBNET>>;

template <typename SUBNET> using alevel1 = dlib::repeat<2,ares16,ares<16,SUBNET>>;
template <typename SUBNET> using alevel2 = dlib::repeat<2,ares24,ares_down<24,SUBNET>>;
template <typename SUBNET> using alevel3 = dlib::repeat<2,ares32,ares_down<32,SUBNET>>;
template <typename SUBNET> using alevel4 = dlib::repeat<2,ares48,ares_down<48,SUBNET>>;

template <typename SUBNET> using level1t = dlib::repeat<2,res16,res_up<16,SUBNET>>;
template <typename SUBNET> using level2t = dlib::repeat<2,res24,res_up<24,SUBNET>>;
template <typename SUBNET> using level3t = dlib::repeat<2,res32,res_up<32,SUBNET>>;
template <typename SUBNET> using level4t = dlib::repeat<2,res48,res_up<48,SUBNET>>;

template <typename SUBNET> using alevel1t = dlib::repeat<2,ares16,ares_up<16,SUBNET>>;
template <typename SUBNET> using alevel2t = dlib::repeat<2,ares24,ares_up<24,SUBNET>>;
template <typename SUBNET> using alevel3t = dlib::repeat<2,ares32,ares_up<32,SUBNET>>;
template <typename SUBNET> using alevel4t = dlib::repeat<2,ares48,ares_up<48,SUBNET>>;

// ----------------------------------------------------------------------------------------

template <
    template<typename> class TAGGED,
    template<typename> class PREV_RESIZED,
    typename SUBNET
>
using resize_and_concat = dlib::add_layer<
                          dlib::concat_<TAGGED,PREV_RESIZED>,
                          PREV_RESIZED<dlib::resize_prev_to_tagged<TAGGED,SUBNET>>>;

template <typename SUBNET> using utag1 = dlib::add_tag_layer<2100+1,SUBNET>;
template <typename SUBNET> using utag2 = dlib::add_tag_layer<2100+2,SUBNET>;
template <typename SUBNET> using utag3 = dlib::add_tag_layer<2100+3,SUBNET>;
template <typename SUBNET> using utag4 = dlib::add_tag_layer<2100+4,SUBNET>;

template <typename SUBNET> using utag1_ = dlib::add_tag_layer<2110+1,SUBNET>;
template <typename SUBNET> using utag2_ = dlib::add_tag_layer<2110+2,SUBNET>;
template <typename SUBNET> using utag3_ = dlib::add_tag_layer<2110+3,SUBNET>;
template <typename SUBNET> using utag4_ = dlib::add_tag_layer<2110+4,SUBNET>;

template <typename SUBNET> using concat_utag1 = resize_and_concat<utag1,utag1_,SUBNET>;
template <typename SUBNET> using concat_utag2 = resize_and_concat<utag2,utag2_,SUBNET>;
template <typename SUBNET> using concat_utag3 = resize_and_concat<utag3,utag3_,SUBNET>;
template <typename SUBNET> using concat_utag4 = resize_and_concat<utag4,utag4_,SUBNET>;

// ----------------------------------------------------------------------------------------

static const char* instance_segmentation_net_filename = "instance_segmentation_voc2012net_v2.dnn";

// ----------------------------------------------------------------------------------------

// training network type
using seg_bnet_type = dlib::loss_binary_log_per_pixel<
                              dlib::cont<1,1,1,1,1,
                              dlib::relu<dlib::bn_con<dlib::cont<16,7,7,2,2,
                              concat_utag1<level1t<
                              concat_utag2<level2t<
                              concat_utag3<level3t<
                              concat_utag4<level4t<
                              level4<utag4<
                              level3<utag3<
                              level2<utag2<
                              level1<dlib::max_pool<3,3,2,2,utag1<
                              dlib::relu<dlib::bn_con<dlib::con<16,7,7,2,2,
                              dlib::input<dlib::matrix<dlib::rgb_pixel>>
                              >>>>>>>>>>>>>>>>>>>>>>>>>;

// testing network type (replaced batch normalization with fixed affine transforms)
using seg_anet_type = dlib::loss_binary_log_per_pixel<
                              dlib::cont<1,1,1,1,1,
                              dlib::relu<dlib::affine<dlib::cont<16,7,7,2,2,
                              concat_utag1<alevel1t<
                              concat_utag2<alevel2t<
                              concat_utag3<alevel3t<
                              concat_utag4<alevel4t<
                              alevel4<utag4<
                              alevel3<utag3<
                              alevel2<utag2<
                              alevel1<dlib::max_pool<3,3,2,2,utag1<
                              dlib::relu<dlib::affine<dlib::con<16,7,7,2,2,
                              dlib::input<dlib::matrix<dlib::rgb_pixel>>
                              >>>>>>>>>>>>>>>>>>>>>>>>>;

// ----------------------------------------------------------------------------------------

#endif // DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_