File size: 10,741 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
Instance segmentation using the PASCAL VOC2012 dataset.
Instance segmentation sort-of combines object detection with semantic
segmentation. While each dog, for example, is detected separately,
the output is not only a bounding-box but a more accurate, per-pixel
mask.
For introductions to object detection and semantic segmentation, you
can have a look at dnn_mmod_ex.cpp and dnn_semantic_segmentation.h,
respectively.
Instructions how to run the example:
1. Download the PASCAL VOC2012 data, and untar it somewhere.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
2. Build the dnn_instance_segmentation_train_ex example program.
3. Run:
./dnn_instance_segmentation_train_ex /path/to/VOC2012
4. Wait while the network is being trained.
5. Build the dnn_instance_segmentation_ex example program.
6. Run:
./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images
An alternative to steps 2-4 above is to download a pre-trained network
from here: http://dlib.net/files/instance_segmentation_voc2012net_v2.dnn
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
before reading this example program.
*/
#ifndef DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_
#define DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_
#include <dlib/dnn.h>
// ----------------------------------------------------------------------------------------
namespace {
// Segmentation will be performed using patches having this size.
constexpr int seg_dim = 227;
}
dlib::rectangle get_cropping_rect(const dlib::rectangle& rectangle)
{
DLIB_ASSERT(!rectangle.is_empty());
const auto center_point = dlib::center(rectangle);
const auto max_dim = std::max(rectangle.width(), rectangle.height());
const auto d = static_cast<long>(std::round(max_dim / 2.0 * 1.5)); // add +50%
return dlib::rectangle(
center_point.x() - d,
center_point.y() - d,
center_point.x() + d,
center_point.y() + d
);
}
// ----------------------------------------------------------------------------------------
// The object detection network.
// Adapted from dnn_mmod_train_find_cars_ex.cpp and friends.
template <long num_filters, typename SUBNET> using con5d = dlib::con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5 = dlib::con<num_filters,5,5,1,1,SUBNET>;
template <typename SUBNET> using bdownsampler = dlib::relu<dlib::bn_con<con5d<128,dlib::relu<dlib::bn_con<con5d<128,dlib::relu<dlib::bn_con<con5d<32,SUBNET>>>>>>>>>;
template <typename SUBNET> using adownsampler = dlib::relu<dlib::affine<con5d<128,dlib::relu<dlib::affine<con5d<128,dlib::relu<dlib::affine<con5d<32,SUBNET>>>>>>>>>;
template <typename SUBNET> using brcon5 = dlib::relu<dlib::bn_con<con5<256,SUBNET>>>;
template <typename SUBNET> using arcon5 = dlib::relu<dlib::affine<con5<256,SUBNET>>>;
using det_bnet_type = dlib::loss_mmod<dlib::con<1,9,9,1,1,brcon5<brcon5<brcon5<bdownsampler<dlib::input_rgb_image_pyramid<dlib::pyramid_down<6>>>>>>>>;
using det_anet_type = dlib::loss_mmod<dlib::con<1,9,9,1,1,arcon5<arcon5<arcon5<adownsampler<dlib::input_rgb_image_pyramid<dlib::pyramid_down<6>>>>>>>>;
// The segmentation network.
// For the time being, this is very much copy-paste from dnn_semantic_segmentation.h, although the network is made narrower (smaller feature maps).
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<dlib::con<N,3,3,1,1,dlib::relu<BN<dlib::con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using blockt = BN<dlib::cont<N,3,3,1,1,dlib::relu<BN<dlib::cont<N,3,3,stride,stride,SUBNET>>>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = dlib::add_prev1<block<N,BN,1,dlib::tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = dlib::add_prev2<dlib::avg_pool<2,2,2,2,dlib::skip1<dlib::tag2<block<N,BN,2,dlib::tag1<SUBNET>>>>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_up = dlib::add_prev2<dlib::cont<N,2,2,2,2,dlib::skip1<dlib::tag2<blockt<N,BN,2,dlib::tag1<SUBNET>>>>>>;
template <int N, typename SUBNET> using res = dlib::relu<residual<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares = dlib::relu<residual<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_down = dlib::relu<residual_down<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_down = dlib::relu<residual_down<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_up = dlib::relu<residual_up<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_up = dlib::relu<residual_up<block,N,dlib::affine,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <typename SUBNET> using res16 = res<16,SUBNET>;
template <typename SUBNET> using res24 = res<24,SUBNET>;
template <typename SUBNET> using res32 = res<32,SUBNET>;
template <typename SUBNET> using res48 = res<48,SUBNET>;
template <typename SUBNET> using ares16 = ares<16,SUBNET>;
template <typename SUBNET> using ares24 = ares<24,SUBNET>;
template <typename SUBNET> using ares32 = ares<32,SUBNET>;
template <typename SUBNET> using ares48 = ares<48,SUBNET>;
template <typename SUBNET> using level1 = dlib::repeat<2,res16,res<16,SUBNET>>;
template <typename SUBNET> using level2 = dlib::repeat<2,res24,res_down<24,SUBNET>>;
template <typename SUBNET> using level3 = dlib::repeat<2,res32,res_down<32,SUBNET>>;
template <typename SUBNET> using level4 = dlib::repeat<2,res48,res_down<48,SUBNET>>;
template <typename SUBNET> using alevel1 = dlib::repeat<2,ares16,ares<16,SUBNET>>;
template <typename SUBNET> using alevel2 = dlib::repeat<2,ares24,ares_down<24,SUBNET>>;
template <typename SUBNET> using alevel3 = dlib::repeat<2,ares32,ares_down<32,SUBNET>>;
template <typename SUBNET> using alevel4 = dlib::repeat<2,ares48,ares_down<48,SUBNET>>;
template <typename SUBNET> using level1t = dlib::repeat<2,res16,res_up<16,SUBNET>>;
template <typename SUBNET> using level2t = dlib::repeat<2,res24,res_up<24,SUBNET>>;
template <typename SUBNET> using level3t = dlib::repeat<2,res32,res_up<32,SUBNET>>;
template <typename SUBNET> using level4t = dlib::repeat<2,res48,res_up<48,SUBNET>>;
template <typename SUBNET> using alevel1t = dlib::repeat<2,ares16,ares_up<16,SUBNET>>;
template <typename SUBNET> using alevel2t = dlib::repeat<2,ares24,ares_up<24,SUBNET>>;
template <typename SUBNET> using alevel3t = dlib::repeat<2,ares32,ares_up<32,SUBNET>>;
template <typename SUBNET> using alevel4t = dlib::repeat<2,ares48,ares_up<48,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class TAGGED,
template<typename> class PREV_RESIZED,
typename SUBNET
>
using resize_and_concat = dlib::add_layer<
dlib::concat_<TAGGED,PREV_RESIZED>,
PREV_RESIZED<dlib::resize_prev_to_tagged<TAGGED,SUBNET>>>;
template <typename SUBNET> using utag1 = dlib::add_tag_layer<2100+1,SUBNET>;
template <typename SUBNET> using utag2 = dlib::add_tag_layer<2100+2,SUBNET>;
template <typename SUBNET> using utag3 = dlib::add_tag_layer<2100+3,SUBNET>;
template <typename SUBNET> using utag4 = dlib::add_tag_layer<2100+4,SUBNET>;
template <typename SUBNET> using utag1_ = dlib::add_tag_layer<2110+1,SUBNET>;
template <typename SUBNET> using utag2_ = dlib::add_tag_layer<2110+2,SUBNET>;
template <typename SUBNET> using utag3_ = dlib::add_tag_layer<2110+3,SUBNET>;
template <typename SUBNET> using utag4_ = dlib::add_tag_layer<2110+4,SUBNET>;
template <typename SUBNET> using concat_utag1 = resize_and_concat<utag1,utag1_,SUBNET>;
template <typename SUBNET> using concat_utag2 = resize_and_concat<utag2,utag2_,SUBNET>;
template <typename SUBNET> using concat_utag3 = resize_and_concat<utag3,utag3_,SUBNET>;
template <typename SUBNET> using concat_utag4 = resize_and_concat<utag4,utag4_,SUBNET>;
// ----------------------------------------------------------------------------------------
static const char* instance_segmentation_net_filename = "instance_segmentation_voc2012net_v2.dnn";
// ----------------------------------------------------------------------------------------
// training network type
using seg_bnet_type = dlib::loss_binary_log_per_pixel<
dlib::cont<1,1,1,1,1,
dlib::relu<dlib::bn_con<dlib::cont<16,7,7,2,2,
concat_utag1<level1t<
concat_utag2<level2t<
concat_utag3<level3t<
concat_utag4<level4t<
level4<utag4<
level3<utag3<
level2<utag2<
level1<dlib::max_pool<3,3,2,2,utag1<
dlib::relu<dlib::bn_con<dlib::con<16,7,7,2,2,
dlib::input<dlib::matrix<dlib::rgb_pixel>>
>>>>>>>>>>>>>>>>>>>>>>>>>;
// testing network type (replaced batch normalization with fixed affine transforms)
using seg_anet_type = dlib::loss_binary_log_per_pixel<
dlib::cont<1,1,1,1,1,
dlib::relu<dlib::affine<dlib::cont<16,7,7,2,2,
concat_utag1<alevel1t<
concat_utag2<alevel2t<
concat_utag3<alevel3t<
concat_utag4<alevel4t<
alevel4<utag4<
alevel3<utag3<
alevel2<utag2<
alevel1<dlib::max_pool<3,3,2,2,utag1<
dlib::relu<dlib::affine<dlib::con<16,7,7,2,2,
dlib::input<dlib::matrix<dlib::rgb_pixel>>
>>>>>>>>>>>>>>>>>>>>>>>>>;
// ----------------------------------------------------------------------------------------
#endif // DLIB_DNn_INSTANCE_SEGMENTATION_EX_H_
|