Spaces:
Sleeping
Sleeping
File size: 7,992 Bytes
0ecaccb 198d05b 8d4602c 198d05b 8d4602c 0ecaccb 8d4602c 198d05b 8d4602c 4f92044 0ecaccb 8d4602c 0ecaccb c544e04 0ecaccb 8d4602c 0ecaccb 4f92044 0ecaccb 7efa62d 4f92044 8d4602c 7efa62d 8d4602c 0ecaccb 8d4602c 7efa62d 0ecaccb 8d4602c 0ecaccb 8d4602c 0ecaccb 8d4602c 0ecaccb 198d05b 0ecaccb 198d05b 0ecaccb 8d4602c 198d05b 0ecaccb 198d05b 392f741 198d05b 0ecaccb 198d05b 0ecaccb 8d4602c 0ecaccb 7efa62d 0ecaccb 8d4602c 198d05b 1ef37f4 0ecaccb 050e47f 0ecaccb 198d05b a6ae7ff caa57eb 0ecaccb 1ef37f4 0ecaccb a78f831 0ecaccb 5eb5b16 0ecaccb 4f92044 198d05b 1ef37f4 0ecaccb 1ef37f4 8d4602c 0ecaccb 8d4602c 1ef37f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import re
import webbrowser
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
from accelerate.commands.estimate import create_empty_model, check_has_model
from accelerate.utils import convert_bytes, calculate_maximum_sizes
# We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
HAS_DISCUSSION = True
MODEL_NAME = None
LIBRARY = None
USER_TOKEN = None
TOKEN = os.environ.get("HUGGINGFACE_API_LOGIN", None)
def check_for_discussion(model_name:str):
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
global TOKEN
api = HfApi(token=TOKEN)
discussions = list(api.get_repo_discussions(model_name))
return any(discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot" for discussion in discussions)
def report_results():
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
global MODEL_NAME, LIBRARY, TOKEN, USER_TOKEN
api = HfApi(token=TOKEN)
results, data = calculate_memory(MODEL_NAME, LIBRARY, ["fp32", "fp16", "int8", "int4"], access_token=USER_TOKEN, raw=True)
minimum = data[0]
USER_TOKEN = None
post = f"""# Model Memory Requirements\n
You will need about {minimum[1]} VRAM to load this model for inference, and {minimum[3]} VRAM to train it using Adam.
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
## Results:
{results}
"""
discussion = api.create_discussion(MODEL_NAME, "[AUTOMATED] Model Memory Requirements", description=post)
webbrowser.open_new_tab(discussion.url)
def convert_url_to_name(url:str):
"Converts a model URL to its name on the Hub"
results = re.findall(r"huggingface.co\/(.*?)#", url)
if len(results) < 1:
raise ValueError(f"URL {url} is not a valid model URL to the Hugging Face Hub")
return results[0]
def calculate_memory(model_name:str, library:str, options:list, access_token:str, raw=False):
"Calculates the memory usage for a model"
if library == "auto":
library = None
if "http" in model_name and "//" in model_name:
try:
model_name = convert_url_to_name(model_name)
except ValueError:
raise gr.Error(f"URL `{model_name}` is not a valid model URL to the Hugging Face Hub")
try:
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
except GatedRepoError:
raise gr.Error(f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access.")
except RepositoryNotFoundError:
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
except ValueError as e:
raise gr.Error(f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)")
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != "unknown":
raise gr.Error(f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo.")
total_size, largest_layer = calculate_maximum_sizes(model)
data = []
title = f"Memory Usage for '{model_name}'"
for dtype in options:
dtype_total_size = total_size
dtype_largest_layer = largest_layer[0]
if dtype in ("float16", "fp16"):
dtype_total_size /= 2
dtype_largest_layer /= 2
elif dtype == "int8":
dtype_total_size /= 4
dtype_largest_layer /= 4
elif dtype == "int4":
dtype_total_size /= 8
dtype_largest_layer /= 8
dtype_training_size = convert_bytes(dtype_total_size * 4)
dtype_total_size = convert_bytes(dtype_total_size)
dtype_largest_layer = convert_bytes(dtype_largest_layer)
data.append({
"dtype": dtype,
"Largest Layer or Residual Group": dtype_largest_layer,
"Total Size": dtype_total_size,
"Training using Adam": dtype_training_size
})
global HAS_DISCUSSION, MODEL_NAME, LIBRARY
HAS_DISCUSSION = check_for_discussion(model_name)
MODEL_NAME = model_name
LIBRARY = library
if raw:
return pd.DataFrame(data).to_markdown(index=False), data
results = [
f'## {title}',
gr.update(visible=True, value=pd.DataFrame(data)),
gr.update(visible=not HAS_DISCUSSION)
]
return results
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(
"""<img src="https://huggingface.co/spaces/hf-accelerate/model-memory-usage/resolve/main/measure_model_size.png" style="float: left;" width="250" height="250"><h1>🤗 Model Memory Calculator</h1>
This tool will help you calculate how much vRAM is needed to train and perform big model inference
on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model
is denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).
These calculations are accurate within a few percent at most, such as `bert-base-cased` being 413.68 MB and the calculator estimating 413.18 MB.
When performing inference, expect to add up to an additional 20% to this as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/).
More tests will be performed in the future to get a more accurate benchmark for each model.
Currently this tool supports all models hosted that use `transformers` and `timm`.
To use this tool pass in the URL or model name of the model you want to calculate the memory usage for,
select which framework it originates from ("auto" will try and detect it from the model metadata), and
what precisions you want to use."""
)
out_text = gr.Markdown()
out = gr.DataFrame(
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"],
interactive=False,
visible=False,
)
with gr.Row():
inp = gr.Textbox(label="Model Name or URL", value="bert-base-cased")
with gr.Row():
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto")
options = gr.CheckboxGroup(
["float32", "float16", "int8", "int4"],
value="float32",
label="Model Precision",
)
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
with gr.Row():
btn = gr.Button("Calculate Memory Usage")
post_to_hub = gr.Button(value = "Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False)
USER_TOKEN = access_token
btn.click(
calculate_memory, inputs=[inp, library, options, access_token], outputs=[out_text, out, post_to_hub],
)
post_to_hub.click(report_results).then(lambda: gr.Button.update(visible=False), outputs=post_to_hub)
demo.launch() |