Spaces:
Sleeping
Sleeping
File size: 2,904 Bytes
73c83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
from densepose.structures.data_relative import DensePoseDataRelative
class DensePoseList:
_TORCH_DEVICE_CPU = torch.device("cpu")
def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU):
assert len(densepose_datas) == len(
boxes_xyxy_abs
), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format(
len(densepose_datas), len(boxes_xyxy_abs)
)
self.densepose_datas = []
for densepose_data in densepose_datas:
assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, (
"Attempt to initialize DensePoseList with DensePose datas "
"of type {}, expected DensePoseDataRelative".format(type(densepose_data))
)
densepose_data_ondevice = (
densepose_data.to(device) if densepose_data is not None else None
)
self.densepose_datas.append(densepose_data_ondevice)
self.boxes_xyxy_abs = boxes_xyxy_abs.to(device)
self.image_size_hw = image_size_hw
self.device = device
def to(self, device):
if self.device == device:
return self
return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device)
def __iter__(self):
return iter(self.densepose_datas)
def __len__(self):
return len(self.densepose_datas)
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_instances={}, ".format(len(self.densepose_datas))
s += "image_width={}, ".format(self.image_size_hw[1])
s += "image_height={})".format(self.image_size_hw[0])
return s
def __getitem__(self, item):
if isinstance(item, int):
densepose_data_rel = self.densepose_datas[item]
return densepose_data_rel
elif isinstance(item, slice):
densepose_datas_rel = self.densepose_datas[item]
boxes_xyxy_abs = self.boxes_xyxy_abs[item]
return DensePoseList(
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
)
elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool):
densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0]
boxes_xyxy_abs = self.boxes_xyxy_abs[item]
return DensePoseList(
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
)
else:
densepose_datas_rel = [self.densepose_datas[i] for i in item]
boxes_xyxy_abs = self.boxes_xyxy_abs[item]
return DensePoseList(
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device
)
|