File size: 12,186 Bytes
dbe9c08
 
 
 
335a37e
dbe9c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358cb7f
 
 
dbe9c08
 
 
 
 
 
 
 
88c55d1
dbe9c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d6114
 
 
 
dbe9c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import json
import nltk
import openai
import chromadb
from langchain.document_loaders import UnstructuredXMLLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.prompts import PromptTemplate
from langchain.chains import AnalyzeDocumentChain
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

# Move variables and functions that don't need to be in the main function outside
nltk.download("punkt", quiet=True)

from nltk import word_tokenize, sent_tokenize


openai.api_key = os.getenv("OPENAI_API_KEY")
if openai.api_key is None:
    raise Exception("OPENAI_API_KEY not found in environment variables")

embeddings = OpenAIEmbeddings()


def split_docs(documents, chunk_size=1000, chunk_overlap=0):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    return text_splitter.split_documents(documents)


def call_QA_to_json(
    prompt, year, month, day, saved_patent_names, index=0, logging=True, model_name="gpt-3.5-turbo"
):
    """
    Generate embeddings from txt documents, retrieve data based on the provided prompt, and return the result as a JSON object.

    Parameters:
        prompt (str): The input prompt for the retrieval process.
        year (int): The year part of the data folder name.
        month (int): The month part of the data folder name.
        day (int): The day part of the data folder name.
        saved_patent_names (list): A list of strings containing the names of saved patent text files.
        index (int): The index of the saved patent text file to process. Default is 0.
        logging (bool): The boolean to print logs

    Returns:
        tuple: A tuple containing two elements:
            - Cost of OpenAI API
            - A JSON string representing the output from the retrieval chain.

    This function loads the specified txt file, generates embeddings from its content,
    and uses a retrieval chain to retrieve data based on the provided prompt.
    The retrieved data is returned as a JSON object, and the raw documents are returned as a list of strings.
    The output is also written to a file in the 'output' directory with the name '{index}.json'.
    """

    llm = ChatOpenAI(model_name=model_name, temperature=0, cache=False)
    file_path = os.path.join(
        os.getcwd(),
        "data",
        "ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
        saved_patent_names[index],
    )

    if logging:
        print(f"Loading documents from: {file_path}")
    loader = TextLoader(file_path)
    documents_raw = loader.load()

    documents = split_docs(documents_raw)


    if logging:
        print("Generating embeddings and persisting...")
    
    vectordb = Chroma.from_documents(
        documents=documents, embedding=embeddings,
    )

    # vectordb.persist()
    PROMPT_FORMAT = """
    Task: Use the following pieces of context to answer the question at the end.

    {context}

    Question: {question}
    """

    PROMPT = PromptTemplate(
        template=PROMPT_FORMAT, input_variables=["context", "question"]
    )

    chain_type_kwargs = {"prompt": PROMPT}



    retrieval_chain = RetrievalQA.from_chain_type(
        llm, chain_type="stuff", 
        retriever=vectordb.as_retriever(), 
        chain_type_kwargs=chain_type_kwargs, 
        # return_source_documents=True

    )

    if logging:
        print("Running retrieval chain...")

    with get_openai_callback() as cb:
        output = retrieval_chain.run(prompt)
        if logging:
            print(f"Total Tokens: {cb.total_tokens}")
            print(f"Prompt Tokens: {cb.prompt_tokens}")
            print(f"Completion Tokens: {cb.completion_tokens}")
            print(f"Successful Requests: {cb.successful_requests}")
            print(f"Total Cost (USD): ${cb.total_cost}")
        cost = cb.total_cost
    

    try:
        # Convert output to dictionary
        output_dict = json.loads(output)

        # Manually assign the Patent Identifier
        output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]


        # Check if the directory 'output' exists, if not create it
        if not os.path.exists("output"):
            os.makedirs("output")

        if logging:
            print("Writing the output to a file...")

        with open(f"output/{saved_patent_names[index]}_{model_name}.json", "w", encoding="utf-8") as json_file:
            json.dump(output_dict, json_file, indent=4, ensure_ascii=False)

        if logging:
            print("Call to 'call_QA_to_json' completed.")

    except Exception as e:
        print("An error occurred while processing the output.")
        print("Error message:", str(e))

    try:
        vectordb.delete(ids=["*"])
    except Exception as e:
        print(f"Error deleting vector database: {str(e)}")
    return cost, output


def call_TA_to_json(
    prompt, year, month, day, saved_patent_names, index=0, logging=True
):
    """
    Retrieve text analytics (TA) data from a specified patent file and convert the output to JSON format.

    This function reads a text document from the patent file specified by the year, month, day, and file name parameters.
    It then applies a QA retrieval process to the document using the provided prompt.
    The result of the QA retrieval process is converted to a JSON object, which is then written to a file.
    Additionally, a patent identifier is manually assigned to the output JSON object.

    Parameters:
        prompt (str): The input prompt for the retrieval process.
        year (int): The year part of the data folder name.
        month (int): The month part of the data folder name.
        day (int): The day part of the data folder name.
        saved_patent_names (list): A list of strings containing the names of saved patent text files.
        index (int, optional): The index of the saved patent text file to process. Default is 0.
        logging (bool, optional): If True, print logs to the console. Default is True.

    Returns:
        tuple: A tuple containing two elements:
            - documents_raw (str): The raw document content loaded from the specified patent file.
            - output (str): A JSON string representing the output from the TA retrieval process.

    Note:
        The output is also written to a file in the 'output' directory with the same name as the input file and a '.json' extension.
    """

    llm = ChatOpenAI(model_name='gpt-3.5-turbo', cache=False)

    file_path = os.path.join(
        os.getcwd(),
        "data",
        "ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
        saved_patent_names[index],
    )

    if logging:
        print(f"Loading documents from: {file_path}")

    with open(file_path, 'r') as f:
        documents_raw = f.read()


    PROMPT_FORMAT = """
    Task: Use the following pieces of context to answer the question at the end.
    Question: 
    """

    prompt = PROMPT_FORMAT + prompt

    qa_chain = load_qa_chain(llm, chain_type="map_reduce")

    qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)


    if logging:
        print("Running Analyze Document chain...")

    output = qa_document_chain.run(input_document=documents_raw, question=prompt)

    
    try:
        # Convert output to dictionary
        output_dict = json.loads(output)

        # Manually assign the Patent Identifier
        output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]


        # Check if the directory 'output' exists, if not create it
        if not os.path.exists("output"):
            os.makedirs("output")

        if logging:
            print("Writing the output to a file...")

        # Write the output to a file in the 'output' directory
        with open(f"output/{saved_patent_names[index]}.json", "w", encoding="utf-8") as json_file:
            json.dump(output_dict, json_file, indent=4, ensure_ascii=False)

        if logging:
            print("Call to 'call_QA_to_json' completed.")
    except Exception as e:
        print("An error occurred while processing the output.")
        print("Error message:", str(e))
    return documents_raw, output



def call_QA_faiss_to_json(
    prompt, year, month, day, saved_patent_names, index=0, logging=True, model_name="gpt-3.5-turbo"
):
    """
    Generate embeddings from txt documents, retrieve data based on the provided prompt, and return the result as a JSON object.

    Parameters:
        prompt (str): The input prompt for the retrieval process.
        year (int): The year part of the data folder name.
        month (int): The month part of the data folder name.
        day (int): The day part of the data folder name.
        saved_patent_names (list): A list of strings containing the names of saved patent text files.
        index (int): The index of the saved patent text file to process. Default is 0.
        logging (bool): The boolean to print logs

    Returns:
        tuple: A tuple containing two elements:
            - A list of strings representing the raw documents loaded from the specified XML file.
            - A JSON string representing the output from the retrieval chain.

    This function loads the specified txt file, generates embeddings from its content,
    and uses a retrieval chain to retrieve data based on the provided prompt.
    The retrieved data is returned as a JSON object, and the raw documents are returned as a list of strings.
    The output is also written to a file in the 'output' directory with the name '{count}.json'.
    """

    llm = ChatOpenAI(model_name=model_name, cache=False)
    chain = load_qa_chain(llm, chain_type="stuff")

    file_path = os.path.join(
        os.getcwd(),
        "data",
        "ipa" + str(year)[2:] + f"{month:02d}" + f"{day:02d}",
        saved_patent_names[index],
    )

    if logging:
        print(f"Loading documents from: {file_path}")
    loader = TextLoader(file_path)
    documents_raw = loader.load()

    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)

    documents = text_splitter.split_documents(documents_raw)



    docsearch = FAISS.from_documents(documents, embeddings)


    docs = docsearch.similarity_search(prompt)


    if logging:
        print("Running chain...")

    with get_openai_callback() as cb:
        output = chain.run(input_documents=docs, question=prompt)
        print(f"Total Tokens: {cb.total_tokens}")
        print(f"Prompt Tokens: {cb.prompt_tokens}")
        print(f"Completion Tokens: {cb.completion_tokens}")
        print(f"Successful Requests: {cb.successful_requests}")
        print(f"Total Cost (USD): ${cb.total_cost}")       

    try:
        # Convert output to dictionary
        output_dict = json.loads(output)

        # Manually assign the Patent Identifier
        output_dict["Patent Identifier"] = saved_patent_names[index].split("-")[0]

        # Check if the directory 'output' exists, if not create it
        if not os.path.exists("output"):
            os.makedirs("output")

        if logging:
            print("Writing the output to a file...")

        # Write the output to a file in the 'output' directory
        with open(f"output/{saved_patent_names[index]}_{model_name}.json", "w", encoding="utf-8") as json_file:
            json.dump(output_dict, json_file, indent=4, ensure_ascii=False)

        if logging:
            print("Call to 'call_QA_to_json' completed.")

    except Exception as e:
        print("An error occurred while processing the output.")
        print("Error message:", str(e))

    docsearch.delete
    return output