File size: 4,944 Bytes
df11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import json
import csv
import io
import requests
import html # For escaping HTML characters
from bs4 import BeautifulSoup
from openai import OpenAI
# Initialize OpenAI API with Nvidia's Mistral model
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key="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"
)
def clean_test_case_output(text):
"""
Cleans the output to handle HTML characters and unwanted tags.
"""
# Unescape HTML entities (convert < back to < and > back to >)
text = html.unescape(text)
# Use BeautifulSoup to handle HTML tags more comprehensively
soup = BeautifulSoup(text, 'html.parser')
# Convert <br> tags to newlines and remove all other tags
cleaned_text = soup.get_text(separator="\n").strip()
return cleaned_text
def generate_testcases(user_story):
"""
Generates advanced QA test cases based on a provided user story by interacting
with Nvidia's Mistral model API. The prompt is refined for clarity,
and the output is processed for better quality.
:param user_story: A string representing the user story for which to generate test cases.
:return: A list of test cases in the form of dictionaries.
"""
try:
# Example few-shot learning prompt to guide the model
completion = client.chat.completions.create(
model="nv-mistralai/mistral-nemo-12b-instruct", # Using Mistral model
messages=[
{"role": "user", "content": f"Generate QA test cases for the following user story: {user_story}"}
],
temperature=0.06, # Further lowering temperature for precise and deterministic output
top_p=0.5, # Prioritize high-probability tokens even more
max_tokens=2048, # Increase max tokens to allow longer content
stream=True # Streaming the response for faster retrieval
)
# Initialize an empty string to accumulate the response
test_cases_text = ""
# Accumulate the response from the streaming chunks
for chunk in completion:
if chunk.choices[0].delta.content is not None:
test_cases_text += chunk.choices[0].delta.content
# Ensure the entire response is captured before cleaning
if test_cases_text.strip() == "":
return [{"test_case": "No test cases generated or output was empty."}]
# Clean the output by unescaping HTML entities and replacing <br> tags
test_cases_text = clean_test_case_output(test_cases_text)
try:
# Try to parse the output as JSON, assuming the model returns structured test cases
test_cases = json.loads(test_cases_text)
if isinstance(test_cases, list):
return test_cases # Return structured test cases
else:
return [{"test_case": test_cases_text}] # Return as a list with the text wrapped in a dict
except json.JSONDecodeError:
# Fallback: return the raw text if JSON parsing fails
return [{"test_case": test_cases_text}]
except requests.exceptions.RequestException as e:
print(f"API request failed: {str(e)}")
return []
# Add options for multiple test case formats
def export_test_cases(test_cases, format='json'):
if not test_cases:
return "No test cases to export."
# Convert test cases (which are currently strings) into a structured format for CSV
structured_test_cases = [{'Test Case': case} for case in test_cases]
if format == 'json':
# Improve JSON export to be line-by-line formatted
return json.dumps(test_cases, indent=4, separators=(',', ': ')) # More readable format
elif format == 'csv':
# Check if test_cases is a list of dicts
if isinstance(test_cases, list) and isinstance(test_cases[0], dict):
output = io.StringIO()
csv_writer = csv.DictWriter(output, fieldnames=test_cases[0].keys(), quoting=csv.QUOTE_ALL)
csv_writer.writeheader()
csv_writer.writerows(test_cases)
return output.getvalue()
else:
raise ValueError("Test cases must be a list of dictionaries for CSV export.")
# 2. Save test cases as a downloadable file
def save_test_cases_as_file(test_cases, format='json'):
if not test_cases:
return "No test cases to save."
if format == 'json':
with open('test_cases.json', 'w') as f:
json.dump(test_cases, f)
elif format == 'csv':
with open('test_cases.csv', 'w', newline='') as file:
dict_writer = csv.DictWriter(file, fieldnames=test_cases[0].keys())
dict_writer.writeheader()
dict_writer.writerows(test_cases)
else:
return f"Unsupported format: {format}"
return f'{format} file saved'
|