File size: 4,694 Bytes
bffd5b1
3acc94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffd5b1
 
 
 
3acc94f
bffd5b1
3acc94f
4b21d34
3acc94f
bffd5b1
 
 
3acc94f
 
 
 
bffd5b1
3acc94f
 
 
bffd5b1
3acc94f
bffd5b1
 
3acc94f
bffd5b1
 
 
3acc94f
bffd5b1
3acc94f
 
 
 
 
 
 
 
bffd5b1
3acc94f
 
 
 
 
 
bffd5b1
971a795
96b3f69
4b21d34
3acc94f
 
bffd5b1
3acc94f
 
bffd5b1
4b21d34
 
 
2b09f60
 
 
4b21d34
bffd5b1
3acc94f
4b21d34
3acc94f
 
 
 
 
 
 
 
 
 
3fefe22
3acc94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b21d34
 
3acc94f
 
4b21d34
3acc94f
4b21d34
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr

import warnings

import torch

os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
warnings.filterwarnings("ignore")


from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T

from huggingface_hub import hf_hub_download



# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"


def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def image_transform_grounding(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return init_image, image

def image_transform_grounding_for_vis(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return image

model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)

def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
    init_image = input_image.convert("RGB")
    original_size = init_image.size

    _, image_tensor = image_transform_grounding(init_image)
    image_pil: Image = image_transform_grounding_for_vis(init_image)

    # run grounidng
    boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
    annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
    image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))


    return image_with_box

if __name__ == "__main__":
  
    css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""
    block = gr.Blocks(css=css).queue()
    with block:
        gr.Markdown("<h1><center>Grounding DINO<h1><center>")
        gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/Arulkumar03/SOTA-Grounding-DINO.ipynb'>Grounding DINO</a><h3><center>")
        gr.Markdown("<h3><center>Note the model runs on CPU, so it may take a while to run the model.<h3><center>")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="pil")
                grounding_caption = gr.Textbox(label="Detection Prompt")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )

            with gr.Column():
                gallery = gr.outputs.Image(
                    type="pil",
                    # label="grounding results"
                ).style(full_width=True, full_height=True)
                # gallery = gr.Gallery(label="Generated images", show_label=False).style(
                #         grid=[1], height="auto", container=True, full_width=True, full_height=True)

        run_button.click(fn=run_grounding, inputs=[
                        input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
        gr.Examples(
          [["watermelon.jpg", "watermelon", 0.25, 0.25]],
          inputs = [input_image, grounding_caption, box_threshold, text_threshold],
          outputs = [gallery],
          fn=run_grounding,
          cache_examples=True,
          label='Try this example input!'
      )
    block.launch(share=True, show_api=False, show_error=True)