File size: 8,745 Bytes
6bd52b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from typing import Tuple, List

import cv2
import numpy as np
import supervision as sv
import torch
from PIL import Image
from torchvision.ops import box_convert
import bisect

import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.misc import clean_state_dict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import get_phrases_from_posmap

# ----------------------------------------------------------------------------------------------------------------------
# OLD API
# ----------------------------------------------------------------------------------------------------------------------


def preprocess_caption(caption: str) -> str:
    result = caption.lower().strip()
    if result.endswith("."):
        return result
    return result + "."


def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    model.eval()
    return model


def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_source = Image.open(image_path).convert("RGB")
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image, image_transformed


def predict(
        model,
        image: torch.Tensor,
        caption: str,
        box_threshold: float,
        text_threshold: float,
        device: str = "cuda",
        remove_combined: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
    caption = preprocess_caption(caption=caption)

    model = model.to(device)
    image = image.to(device)

    with torch.no_grad():
        outputs = model(image[None], captions=[caption])

    prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0]  # prediction_logits.shape = (nq, 256)
    prediction_boxes = outputs["pred_boxes"].cpu()[0]  # prediction_boxes.shape = (nq, 4)

    mask = prediction_logits.max(dim=1)[0] > box_threshold
    logits = prediction_logits[mask]  # logits.shape = (n, 256)
    boxes = prediction_boxes[mask]  # boxes.shape = (n, 4)

    tokenizer = model.tokenizer
    tokenized = tokenizer(caption)
    
    if remove_combined:
        sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
        
        phrases = []
        for logit in logits:
            max_idx = logit.argmax()
            insert_idx = bisect.bisect_left(sep_idx, max_idx)
            right_idx = sep_idx[insert_idx]
            left_idx = sep_idx[insert_idx - 1]
            phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', ''))
    else:
        phrases = [
            get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
            for logit
            in logits
        ]

    return boxes, logits.max(dim=1)[0], phrases


def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
    h, w, _ = image_source.shape
    boxes = boxes * torch.Tensor([w, h, w, h])
    xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
    detections = sv.Detections(xyxy=xyxy)

    labels = [
        f"{phrase} {logit:.2f}"
        for phrase, logit
        in zip(phrases, logits)
    ]

    box_annotator = sv.BoxAnnotator()
    annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
    annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
    return annotated_frame


# ----------------------------------------------------------------------------------------------------------------------
# NEW API
# ----------------------------------------------------------------------------------------------------------------------


class Model:

    def __init__(
        self,
        model_config_path: str,
        model_checkpoint_path: str,
        device: str = "cuda"
    ):
        self.model = load_model(
            model_config_path=model_config_path,
            model_checkpoint_path=model_checkpoint_path,
            device=device
        ).to(device)
        self.device = device

    def predict_with_caption(
        self,
        image: np.ndarray,
        caption: str,
        box_threshold: float = 0.35,
        text_threshold: float = 0.25
    ) -> Tuple[sv.Detections, List[str]]:
        """
        import cv2

        image = cv2.imread(IMAGE_PATH)

        model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
        detections, labels = model.predict_with_caption(
            image=image,
            caption=caption,
            box_threshold=BOX_THRESHOLD,
            text_threshold=TEXT_THRESHOLD
        )

        import supervision as sv

        box_annotator = sv.BoxAnnotator()
        annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
        """
        processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
        boxes, logits, phrases = predict(
            model=self.model,
            image=processed_image,
            caption=caption,
            box_threshold=box_threshold,
            text_threshold=text_threshold, 
            device=self.device)
        source_h, source_w, _ = image.shape
        detections = Model.post_process_result(
            source_h=source_h,
            source_w=source_w,
            boxes=boxes,
            logits=logits)
        return detections, phrases

    def predict_with_classes(
        self,
        image: np.ndarray,
        classes: List[str],
        box_threshold: float,
        text_threshold: float
    ) -> sv.Detections:
        """
        import cv2

        image = cv2.imread(IMAGE_PATH)

        model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
        detections = model.predict_with_classes(
            image=image,
            classes=CLASSES,
            box_threshold=BOX_THRESHOLD,
            text_threshold=TEXT_THRESHOLD
        )


        import supervision as sv

        box_annotator = sv.BoxAnnotator()
        annotated_image = box_annotator.annotate(scene=image, detections=detections)
        """
        caption = ". ".join(classes)
        processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
        boxes, logits, phrases = predict(
            model=self.model,
            image=processed_image,
            caption=caption,
            box_threshold=box_threshold,
            text_threshold=text_threshold,
            device=self.device)
        source_h, source_w, _ = image.shape
        detections = Model.post_process_result(
            source_h=source_h,
            source_w=source_w,
            boxes=boxes,
            logits=logits)
        class_id = Model.phrases2classes(phrases=phrases, classes=classes)
        detections.class_id = class_id
        return detections

    @staticmethod
    def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
        transform = T.Compose(
            [
                T.RandomResize([800], max_size=1333),
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )
        image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
        image_transformed, _ = transform(image_pillow, None)
        return image_transformed

    @staticmethod
    def post_process_result(
            source_h: int,
            source_w: int,
            boxes: torch.Tensor,
            logits: torch.Tensor
    ) -> sv.Detections:
        boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
        xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
        confidence = logits.numpy()
        return sv.Detections(xyxy=xyxy, confidence=confidence)

    @staticmethod
    def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
        class_ids = []
        for phrase in phrases:
            for class_ in classes:
                if class_ in phrase:
                    class_ids.append(classes.index(class_))
                    break
            else:
                class_ids.append(None)
        return np.array(class_ids)