File size: 5,092 Bytes
fe1fc2e 467c73a 3c4de7d bd26a11 8356c3c bd26a11 467c73a fe1fc2e 644332a 8356c3c dfb65c1 d7aef04 2390875 10edf7a 866a2b0 10edf7a 5401b17 10edf7a d1e59aa 9f3b8b8 c4b7f37 d1e59aa c4b7f37 d1e59aa c4b7f37 d1e59aa c4b7f37 d1e59aa c4b7f37 d1e59aa c4b7f37 d1e59aa c4b7f37 4df9abe 26e268c d1e59aa 55e669b d1e59aa 55e669b d1e59aa 55e669b 9f3b8b8 55e669b 9f3b8b8 55e669b ad6b649 55e669b 815187b 55e669b 9f3b8b8 fd0bd52 c547536 05d1ad8 fe1fc2e 3c4de7d c547536 8356c3c 9f3b8b8 8356c3c fe1fc2e c547536 3c4de7d fe1fc2e 9f3b8b8 fe1fc2e c547536 fe1fc2e 3c4de7d c547536 3c4de7d fe1fc2e c547536 3c4de7d c547536 55e669b 5bd324a 815187b 10edf7a 815187b c547536 7889af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import llamacpp
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain
from langchain.document_loaders import TextLoader
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.document_loaders.directory import DirectoryLoader
from htmlTemplates import css, bot_template, user_template
def get_vectorstore(text_chunks):
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
vectorstore_path = "docs/chroma/"
if not os.path.exists(vectorstore_path):
os.makedirs(vectorstore_path)
vectorstore = Chroma.from_documents(
documents=text_chunks, embedding=embeddings, persist_directory="docs/chroma/")
return vectorstore
data_path = "data"
documents = []
for filename in os.listdir(data_path):
if filename.endswith('.txt'):
file_path = os.path.join(data_path, filename)
documents = TextLoader(file_path).load()
documents.extend(documents)
docs = split_docs(documents, 350, 40)
vectorstore = get_vectorstore(docs)
def main():
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
def handle_userinput(user_question,vectorstore):
Rag_chain = create_conversational_rag_chain()
response = Rag_chain({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
if 'retrieved_documents' in response:
st.subheader("Retrieved Documents")
for doc in response['source_documents']:
st.write(f"Document: {doc.metadata['source']}")
st.write(doc.page_content)
def create_conversational_rag_chain(vectorstore):
model_path = ('qwen2-0_5b-instruct-q4_0.gguf')
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = llamacpp.LlamaCpp(
model_path=model_path,
n_gpu_layers=1,
temperature=0.1,
top_p=0.9,
n_ctx=22000,
max_tokens=200,
repeat_penalty=1.7,
callback_manager=callback_manager,
verbose=False,
)
contextualize_q_system_prompt = """Given a context, chat history and the latest user question
which maybe reference context in the chat history, formulate a standalone question
which can be understood without the chat history. Do NOT answer the question,
just reformulate it if needed and otherwise return it as is."""
ha_retriever = history_aware_retriever(llm, vectorstore.as_retriever(), contextualize_q_system_prompt)
qa_system_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Be as informative as possible, be polite and formal.\n{context}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(ha_retriever, question_answer_chain)
msgs = StreamlitChatMessageHistory(key="special_app_key")
return rag_chain
if __name__ == "__main__":
main(vectorstore) |