File size: 2,914 Bytes
960cd20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import logging

from contants import config


class HParams:
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) == dict:
                v = HParams(**v)
            self[k] = v

    def keys(self):
        return self.__dict__.keys()

    def items(self):
        return self.__dict__.items()

    def values(self):
        return self.__dict__.values()

    def __len__(self):
        return len(self.__dict__)

    def __getitem__(self, key):
        return getattr(self, key)

    def __setitem__(self, key, value):
        return setattr(self, key, value)

    def __contains__(self, key):
        return key in self.__dict__

    def __repr__(self):
        return self.__dict__.__repr__()


def load_checkpoint(checkpoint_path, model):
    from torch import load
    checkpoint_dict = load(checkpoint_path, map_location=config.system.device)
    iteration = checkpoint_dict.get('iteration', None)
    saved_state_dict = checkpoint_dict['model']
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
        except:
            logging.info(f"{k} is not in the checkpoint")
            new_state_dict[k] = v
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    # if iteration:
    #     logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration})")
    # else:
    #     logging.info(f"Loaded checkpoint '{checkpoint_path}'")
    return iteration


def get_hparams_from_file(config_path):
    from json import loads
    with open(config_path, 'r', encoding='utf-8') as f:
        data = f.read()
    config = loads(data)

    hparams = HParams(**config)
    return hparams


def load_audio_to_torch(full_path, target_sampling_rate):
    import librosa
    from torch import FloatTensor
    from numpy import float32
    audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
    return FloatTensor(audio.astype(float32))


def check_is_none(*items) -> bool:
    """
    Check if any item is None or an empty string.

    Args:
        *items: Variable number of items to check.

    Returns:
        bool: True if any item is None or an empty string, False otherwise.
    """
    for item in items:
        if item is None or (isinstance(item, str) and str(item).isspace()) or str(item) == "":
            return True
    return False


def clean_folder(folder_path):
    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)
        # 如果是文件,则删除文件。如果是文件夹则跳过。
        if os.path.isfile(file_path):
            os.remove(file_path)