Spaces:
Sleeping
Sleeping
File size: 2,914 Bytes
960cd20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import os
import logging
from contants import config
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def load_checkpoint(checkpoint_path, model):
from torch import load
checkpoint_dict = load(checkpoint_path, map_location=config.system.device)
iteration = checkpoint_dict.get('iteration', None)
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logging.info(f"{k} is not in the checkpoint")
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
# if iteration:
# logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration})")
# else:
# logging.info(f"Loaded checkpoint '{checkpoint_path}'")
return iteration
def get_hparams_from_file(config_path):
from json import loads
with open(config_path, 'r', encoding='utf-8') as f:
data = f.read()
config = loads(data)
hparams = HParams(**config)
return hparams
def load_audio_to_torch(full_path, target_sampling_rate):
import librosa
from torch import FloatTensor
from numpy import float32
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
return FloatTensor(audio.astype(float32))
def check_is_none(*items) -> bool:
"""
Check if any item is None or an empty string.
Args:
*items: Variable number of items to check.
Returns:
bool: True if any item is None or an empty string, False otherwise.
"""
for item in items:
if item is None or (isinstance(item, str) and str(item).isspace()) or str(item) == "":
return True
return False
def clean_folder(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
# å¦‚æžœæ˜¯æ–‡ä»¶ï¼Œåˆ™åˆ é™¤æ–‡ä»¶ã€‚å¦‚æžœæ˜¯æ–‡ä»¶å¤¹åˆ™è·³è¿‡ã€‚
if os.path.isfile(file_path):
os.remove(file_path)
|