File size: 26,709 Bytes
960cd20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import gc
import glob
import logging
import os
import traceback

import cpuinfo
import numpy as np
import psutil
import torch

# from contants import config
from contants import config
import utils
from bert_vits2 import Bert_VITS2
from contants import ModelType
from gpt_sovits.gpt_sovits import GPT_SoVITS
from logger import logger
from manager.observer import Subject
from utils.data_utils import HParams, check_is_none
from vits import VITS
from vits.hubert_vits import HuBert_VITS
from vits.w2v2_vits import W2V2_VITS


class ModelManager(Subject):
    def __init__(self, device=config.system.device):
        self.device = device
        self.logger = logger

        self.models = {
            # ModelType:{model_id: {"model_path": model_path, "config_path": config_path, "model": model,
            # "n_speakers": n_speakers}},
            # model_id 类型为 int
            ModelType.VITS: {},
            ModelType.HUBERT_VITS: {},
            ModelType.W2V2_VITS: {},
            ModelType.BERT_VITS2: {},
            ModelType.GPT_SOVITS: {},
        }
        self.sid2model = {
            # ModelType:[{"real_id": real_id, "model": model, "model_id": model_id, "n_speakers": n_speakers}]
            ModelType.VITS: [],
            ModelType.HUBERT_VITS: [],
            ModelType.W2V2_VITS: [],
            ModelType.BERT_VITS2: [],
            ModelType.GPT_SOVITS: [],
        }
        self.voice_speakers = {
            ModelType.VITS.value: [],
            ModelType.HUBERT_VITS.value: [],
            ModelType.W2V2_VITS.value: [],
            ModelType.BERT_VITS2.value: [],
            ModelType.GPT_SOVITS.value: [],
        }

        self.emotion_reference = None
        self.hubert = None
        self.dimensional_emotion_model = None
        self.tts_front = None
        self.bert_models = {}
        self.model_handler = None
        self.emotion_model = None
        self.processor = None

        # self.sid2model = []
        # self.name_mapping_id = []

        self.voice_objs_count = 0

        self._observers = []

        self.model_class_map = {
            ModelType.VITS: VITS,
            ModelType.HUBERT_VITS: HuBert_VITS,
            ModelType.W2V2_VITS: W2V2_VITS,
            ModelType.BERT_VITS2: Bert_VITS2,
            ModelType.GPT_SOVITS: GPT_SoVITS,
        }

        self.available_tts_model = set()

    def model_init(self):
        if config.tts_config.auto_load:
            models = self.scan_path()
        else:
            models = config.tts_config.asdict().get("models")

        for model in models:
            self.load_model(model_path=model.get("model_path"),
                            config_path=model.get("config_path"),
                            sovits_path=model.get("sovits_path"),
                            gpt_path=model.get("gpt_path"))

        dimensional_emotion_model_path = os.path.join(config.abs_path, config.system.data_path,
                                                      config.model_config.dimensional_emotion_model)
        if os.path.isfile(dimensional_emotion_model_path):
            if self.dimensional_emotion_model is None:
                self.dimensional_emotion_model = self.load_dimensional_emotion_model(dimensional_emotion_model_path)

        self.log_device_info()

        if self.vits_speakers_count != 0:
            self.logger.info(f"[{ModelType.VITS.value}] {self.vits_speakers_count} speakers")
        if self.hubert_speakers_count != 0:
            self.logger.info(f"[{ModelType.HUBERT_VITS.value}] {self.hubert_speakers_count} speakers")
        if self.w2v2_speakers_count != 0:
            self.logger.info(f"[{ModelType.W2V2_VITS.value}] {self.w2v2_speakers_count} speakers")
        if self.bert_vits2_speakers_count != 0:
            self.logger.info(f"[{ModelType.BERT_VITS2.value}] {self.bert_vits2_speakers_count} speakers")
        if self.gpt_sovits_speakers_count != 0:
            self.logger.info(f"[{ModelType.GPT_SOVITS.value}] {self.gpt_sovits_speakers_count} speakers")
        self.logger.info(f"{self.speakers_count} speakers in total.")
        if self.speakers_count == 0:
            self.logger.warning(f"No model was loaded.")

    @property
    def vits_speakers(self):
        return self.voice_speakers[ModelType.VITS]

    @property
    def speakers_count(self):
        return self.vits_speakers_count + self.hubert_speakers_count + self.w2v2_speakers_count + self.bert_vits2_speakers_count + self.gpt_sovits_speakers_count

    @property
    def vits_speakers_count(self):
        return len(self.voice_speakers[ModelType.VITS.value])

    @property
    def hubert_speakers_count(self):
        return len(self.voice_speakers[ModelType.HUBERT_VITS.value])

    @property
    def w2v2_speakers_count(self):
        return len(self.voice_speakers[ModelType.W2V2_VITS.value])

    @property
    def w2v2_emotion_count(self):
        return len(self.emotion_reference) if self.emotion_reference is not None else 0

    @property
    def bert_vits2_speakers_count(self):
        return len(self.voice_speakers[ModelType.BERT_VITS2.value])

    @property
    def gpt_sovits_speakers_count(self):
        return len(self.voice_speakers[ModelType.GPT_SOVITS.value])

    # 添加观察者
    def attach(self, observer):
        self._observers.append(observer)

    # 移除观察者
    def detach(self, observer):
        self._observers.remove(observer)

    # 通知所有观察者
    def notify(self, event_type, **kwargs):
        for observer in self._observers:
            observer.update(event_type, **kwargs)

    def log_device_info(self):
        cuda_available = torch.cuda.is_available()
        self.logger.info(
            f"PyTorch Version: {torch.__version__} Cuda available:{cuda_available} Device type:{self.device.type}")
        if self.device.type == 'cuda':
            if cuda_available:
                device_name = torch.cuda.get_device_name(self.device.index)
                gpu_memory_info = round(torch.cuda.get_device_properties(self.device).total_memory / 1024 ** 3)  # GB
                self.logger.info(
                    f"Using GPU on {device_name} {gpu_memory_info}GB, GPU Device Index: {self.device.index}")
            else:
                self.logger.warning("GPU device specified, but CUDA is not available.")
        else:
            cpu_info = cpuinfo.get_cpu_info()
            cpu_name = cpu_info.get("brand_raw")
            cpu_count = psutil.cpu_count(logical=False)
            thread_count = psutil.cpu_count(logical=True)
            memory_info = psutil.virtual_memory()
            total_memory = round(memory_info.total / (1024 ** 3))
            self.logger.info(
                f"Using CPU on {cpu_name} with {cpu_count} cores and {thread_count} threads. Total memory: {total_memory}GB")

    def relative_to_absolute_path(self, *paths):
        absolute_paths = []

        for path in paths:
            if path is None:
                return None
            path = os.path.normpath(path)
            if path.startswith('models'):
                path = os.path.join(config.abs_path, config.system.data_path, path)
            else:
                path = os.path.join(config.abs_path, config.system.data_path, config.tts_config.models_path,
                                    path)
            absolute_paths.append(path)

        return absolute_paths

    def absolute_to_relative_path(self, *paths):
        relative_paths = []
        for path in paths:
            if path is None:
                relative_paths.append(None)
                continue

            # 获取models目录下的相对路径
            relative_path = os.path.relpath(path, os.path.join(config.abs_path, config.system.data_path,
                                                               config.tts_config.models_path))

            relative_paths.append(relative_path)

        return relative_paths

    def _load_model_from_path(self, model_path, config_path, sovits_path, gpt_path):
        if check_is_none(sovits_path, gpt_path):
            hps = utils.get_hparams_from_file(config_path)
            model_type = self.recognition_model_type(hps)
        else:
            hps = None
            model_type = ModelType.GPT_SOVITS

        model_args = {
            "model_type": model_type,
            "model_path": model_path,
            "config_path": config_path,
            "sovits_path": sovits_path,
            "gpt_path": gpt_path,
            "config": hps,
            "device": self.device
        }

        model_class = self.model_class_map[model_type]
        model = model_class(**model_args)

        if model_type == ModelType.VITS:
            bert_embedding = getattr(hps.data, 'bert_embedding', getattr(hps.model, 'bert_embedding', False))
            if bert_embedding and self.tts_front is None:
                self.load_VITS_PinYin_model(
                    os.path.join(config.abs_path, config.system.data_path, config.model_config.vits_chinese_bert))
            if not config.vits_config.dynamic_loading:
                model.load_model()
            self.available_tts_model.add(ModelType.VITS.value)

        elif model_type == ModelType.W2V2_VITS:
            if self.emotion_reference is None:
                self.emotion_reference = self.load_npy(
                    os.path.join(config.abs_path, config.system.data_path, config.model_config.dimensional_emotion_npy))
            model.load_model(emotion_reference=self.emotion_reference,
                             dimensional_emotion_model=self.dimensional_emotion_model)
            self.available_tts_model.add(ModelType.W2V2_VITS.value)

        elif model_type == ModelType.HUBERT_VITS:
            if self.hubert is None:
                self.hubert = self.load_hubert_model(
                    os.path.join(config.abs_path, config.system.data_path, config.model_config.hubert_soft_0d54a1f4))
            model.load_model(hubert=self.hubert)

        elif model_type == ModelType.BERT_VITS2:
            bert_model_names = model.bert_model_names
            for bert_model_name in bert_model_names.values():
                if self.model_handler is None:
                    from manager.model_handler import ModelHandler
                    self.model_handler = ModelHandler(self.device)
                self.model_handler.load_bert(bert_model_name)
            if model.hps_ms.model.emotion_embedding == 1:
                self.model_handler.load_emotion()
            elif model.hps_ms.model.emotion_embedding == 2:
                self.model_handler.load_clap()

            model.load_model(self.model_handler)

            self.available_tts_model.add(ModelType.BERT_VITS2.value)

        elif model_type == ModelType.GPT_SOVITS:
            if self.model_handler is None:
                from manager.model_handler import ModelHandler
                self.model_handler = ModelHandler(self.device)
            self.model_handler.load_ssl()
            self.model_handler.load_bert("CHINESE_ROBERTA_WWM_EXT_LARGE")
            model.load_model(self.model_handler)

        sid2model = []
        speakers = []
        new_id = len(self.voice_speakers[model_type.value])
        model_id = max([-1] + list(self.models[model_type].keys())) + 1

        for real_id, name in enumerate(model.speakers):
            sid2model.append({"real_id": real_id, "model": model, "model_id": model_id})
            speakers.append({"id": new_id, "name": name, "lang": model.lang})
            new_id += 1

        model_data = {
            "model": model,
            "model_type": model_type,
            "model_id": model_id,
            "model_path": model_path,
            "config": hps,
            "sovits_path": sovits_path,
            "gpt_path": gpt_path,
            "sid2model": sid2model,
            "speakers": speakers
        }
        if model_type == ModelType.GPT_SOVITS:
            logging.info(
                f"model_type:{model_type.value} model_id:{model_id} sovits_path:{sovits_path} gpt_path:{gpt_path}")
        else:
            logging.info(
                f"model_type:{model_type.value} model_id:{model_id} n_speakers:{len(speakers)} model_path:{model_path}")

        return model_data

    def load_model(self, model_path: str, config_path: str, sovits_path: str, gpt_path: str):
        try:
            if not check_is_none(model_path, config_path):
                model_path, config_path = self.relative_to_absolute_path(model_path, config_path)
            else:
                sovits_path, gpt_path = self.relative_to_absolute_path(sovits_path, gpt_path)

            model_data = self._load_model_from_path(model_path, config_path, sovits_path, gpt_path)
            model_id = model_data["model_id"]
            sid2model = model_data["sid2model"]
            model_type = model_data["model_type"]

            self.models[model_type][model_id] = {
                "model_type": model_data.get("model_type"),
                "model_path": model_path,
                "config_path": config_path,
                "sovits_path": sovits_path,
                "gpt_path": gpt_path,
                "model": model_data.get("model"),
                "n_speakers": len(model_data["speakers"])}
            self.sid2model[model_type].extend(sid2model)
            self.voice_speakers[model_type.value].extend(model_data["speakers"])

            self.notify("model_loaded", model_manager=self)
            state = True
        except Exception as e:
            self.logger.info(f"Loading failed. {e}")
            self.logger.error(traceback.format_exc())
            state = False
        return state

    def unload_model(self, model_type_value: str, model_id: str):
        state = False
        model_type = ModelType(model_type_value)
        model_id = int(model_id)
        try:
            if model_id in self.models[model_type].keys():
                model_data = self.models[model_type][model_id]
                model = model_data.get("model")
                n_speakers = model_data.get("n_speakers")
                start = 0

                for key, value in self.models[model_type].items():
                    if key == model_id:
                        break
                    start += value.get("n_speakers")

                if model_type == ModelType.BERT_VITS2:
                    for bert_model_name in model.bert_model_names.values():
                        self.model_handler.release_bert(bert_model_name)
                    if model.version == "2.1":
                        self.model_handler.release_emotion()
                    elif model.version in ["2.2", "extra", "2.4"]:
                        self.model_handler.release_clap()
                elif model_type == ModelType.GPT_SOVITS:
                    self.model_handler.release_bert("CHINESE_ROBERTA_WWM_EXT_LARGE")
                    self.model_handler.release_ssl_model()

                del self.sid2model[model_type][start:start + n_speakers]
                del self.voice_speakers[model_type.value][start:start + n_speakers]
                del self.models[model_type][model_id]

                for new_id, speaker in enumerate(self.voice_speakers[model_type.value]):
                    speaker["id"] = new_id

                gc.collect()
                torch.cuda.empty_cache()

                state = True
                self.notify("model_unloaded", model_manager=self)
                self.logger.info(f"Unloading success.")
        except Exception as e:
            logging.error(traceback.print_exc())
            logging.error(f"Unloading failed. {e}")
            state = False

        return state

    def load_dimensional_emotion_model(self, model_path):
        try:
            import audonnx
            root = os.path.dirname(model_path)
            model_file = model_path
            dimensional_emotion_model = audonnx.load(root=root, model_file=model_file)

            self.notify("model_loaded", model_manager=self)
        except Exception as e:
            self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")

        return dimensional_emotion_model

    def unload_dimensional_emotion_model(self):
        self.dimensional_emotion_model = None
        self.notify("model_unloaded", model_manager=self)

    def load_hubert_model(self, model_path):
        """"HuBERT-VITS"""
        try:
            from vits.hubert_model import hubert_soft
            hubert = hubert_soft(model_path)
        except Exception as e:
            self.logger.warning(f"Load HUBERT_SOFT_MODEL failed {e}")
        return hubert

    def unload_hubert_model(self):
        self.hubert = None
        self.notify("model_unloaded", model_manager=self)

    def load_VITS_PinYin_model(self, bert_path):
        """"vits_chinese"""
        from vits.text.vits_pinyin import VITS_PinYin
        if self.tts_front is None:
            self.tts_front = VITS_PinYin(bert_path, self.device)

    def reorder_model(self, old_index, new_index):
        """重新排序模型,将old_index位置的模型移动到new_index位置"""
        if 0 <= old_index < len(self.models) and 0 <= new_index < len(self.models):
            model = self.models[old_index]
            del self.models[old_index]
            self.models.insert(new_index, model)

    def get_models_path(self):
        """按返回模型路径列表,列表每一项为{"model_path": model_path, "config_path": config_path}"""
        info = []
        for models in self.models.values():
            for model in models.values():
                info.append({
                    "model_type": model.get("model_type"),
                    "model_path": model.get("model_path"),
                    "config_path": model.get("config_path"),
                    "sovits_path": model.get("sovits_path"),
                    "gpt_path": model.get("gpt_path"),
                })

        return info

    def get_models_path_by_type(self):
        """按模型类型返回模型路径"""
        info = {
            ModelType.VITS.value: [],
            ModelType.HUBERT_VITS.value: [],
            ModelType.W2V2_VITS.value: [],
            ModelType.BERT_VITS2.value: [],
            ModelType.GPT_SOVITS.value: [],
        }
        for model_type, models in self.models.items():
            for values in models.values():
                info[model_type].append(values[0])

        return info

    def get_models_info(self):
        """按模型类型返回模型文件夹名以及模型文件名,speakers数量"""
        info = {
            ModelType.VITS.value: [],
            ModelType.HUBERT_VITS.value: [],
            ModelType.W2V2_VITS.value: [],
            ModelType.BERT_VITS2.value: [],
            ModelType.GPT_SOVITS.value: [],
        }
        for model_type, model_data in self.models.items():
            if model_type != ModelType.GPT_SOVITS:
                for model_id, model in model_data.items():
                    model_path = model.get("model_path")
                    config_path = model.get("config_path")

                    model_path = self.absolute_to_relative_path(model_path)[0].replace("\\", "/")
                    config_path = self.absolute_to_relative_path(config_path)[0].replace("\\", "/")

                    info[model_type.value].append(
                        {"model_id": model_id,
                         "model_path": model_path,
                         "config_path": config_path,
                         "n_speakers": model.get("n_speakers")})
            else:
                for model_id, model in model_data.items():
                    sovits_path = model.get("sovits_path")
                    gpt_path = model.get("gpt_path")

                    sovits_path = self.absolute_to_relative_path(sovits_path)[0].replace("\\", "/")
                    gpt_path = self.absolute_to_relative_path(gpt_path)[0].replace("\\", "/")

                    info[model_type.value].append(
                        {"model_id": model_id,
                         "sovits_path": sovits_path,
                         "gpt_path": gpt_path,
                         "n_speakers": model.get("n_speakers")})

        return info

    def get_model_by_index(self, model_type, model_id):
        """根据给定的索引返回模型"""
        if 0 <= model_id < len(self.models):
            _, model, _ = self.models[model_type][model_id]
            return model
        return None

    # def get_bert_model(self, bert_model_name):
    #     if bert_model_name not in self.bert_models:
    #         raise ValueError(f"Model {bert_model_name} not loaded!")
    #     return self.bert_models[bert_model_name]

    def clear_all(self):
        """清除所有模型"""
        self.models.clear()

    def recognition_model_type(self, hps: HParams) -> str:
        # model_config = json.load(model_config_json)
        symbols = getattr(hps, "symbols", None)
        # symbols = model_config.get("symbols", None)
        emotion_embedding = getattr(hps.data, "emotion_embedding", False)

        if "use_spk_conditioned_encoder" in hps.model:
            model_type = ModelType.BERT_VITS2
            return model_type

        if symbols != None:
            if not emotion_embedding:
                mode_type = ModelType.VITS
            else:
                mode_type = ModelType.W2V2_VITS
        else:
            mode_type = ModelType.HUBERT_VITS

        return mode_type

    def _load_npy_from_path(self, path):
        model_extention = os.path.splitext(path)[1]
        if model_extention != ".npy":
            raise ValueError(f"Unsupported model type: {model_extention}")
        return np.load(path).reshape(-1, 1024)

    def load_npy(self, emotion_reference_npy):
        emotion_reference = np.empty((0, 1024))

        if isinstance(emotion_reference_npy, list):
            for i in emotion_reference_npy:
                emotion_reference = np.append(emotion_reference, self._load_npy_from_path(i), axis=0)

        elif os.path.isdir(emotion_reference_npy):
            for root, dirs, files in os.walk(emotion_reference_npy):
                for file_name in files:
                    if file_name.endswith(".npy"):
                        file_path = os.path.join(root, file_name)
                        emotion_reference = np.append(emotion_reference, self._load_npy_from_path(file_path),
                                                      axis=0)

        elif os.path.isfile(emotion_reference_npy):
            emotion_reference = self._load_npy_from_path(emotion_reference_npy)

        logging.info(f"Loaded emotional dimention npy range: {len(emotion_reference)}")
        return emotion_reference

    def scan_path(self):
        folder_path = os.path.join(config.abs_path, config.system.data_path, config.tts_config.models_path)
        model_paths = glob.glob(folder_path + "/**/*.pth", recursive=True)
        all_paths = []

        for id, pth_path in enumerate(model_paths):
            pth_name = os.path.basename(pth_path)
            if pth_name.startswith(("D_", "DUR_")):
                continue
            dir_name = os.path.dirname(pth_path)
            config_paths = glob.glob(dir_name + "/*.json", recursive=True)
            gpt_paths = glob.glob(dir_name + "/*.ckpt", recursive=True)
            model_path, config_path, sovits_path, gpt_path, model_type = None, None, None, None, None
            if len(config_paths) > 0:
                model_path = pth_path
                config_path = config_paths[0]
            elif len(gpt_paths) > 0:
                gpt_path = gpt_paths[0]
                sovits_path = pth_path
                model_type = ModelType.GPT_SOVITS
            else:
                continue

            info = {
                "model_id": id,
                "model_type": model_type,
                "model_path": model_path,
                "config_path": config_path,
                "sovits_path": sovits_path,
                "gpt_path": gpt_path,
            }
            all_paths.append(info)

        return all_paths

    def scan_unload_path(self):
        all_paths = self.scan_path()
        unload_paths = []
        loaded_paths = []
        loaded_paths_2 = []

        for model in self.get_models_path():
            # 只取已加载的模型路径
            if model.get("model_type") == ModelType.GPT_SOVITS:
                sovits_path, gpt_path = self.absolute_to_relative_path(model.get("sovits_path"),
                                                                       model.get("gpt_path"))
                sovits_path, gpt_path = sovits_path.replace("\\", "/"), gpt_path.replace("\\", "/")
                loaded_paths_2.append((sovits_path, gpt_path))
            else:
                model_path = self.absolute_to_relative_path(model.get("model_path"))[0].replace("\\", "/")
                loaded_paths.append(model_path)

        for info in all_paths:
            # 将绝对路径修改为相对路径,并将分隔符格式化为'/'
            if info.get("model_type") == ModelType.GPT_SOVITS:
                sovits_path, gpt_path = self.absolute_to_relative_path(info.get("sovits_path"),
                                                                       info.get("gpt_path"))
                sovits_path, gpt_path = sovits_path.replace("\\", "/"), gpt_path.replace("\\", "/")
                if not self.is_path_loaded((sovits_path, gpt_path), loaded_paths_2):
                    info.update(
                        {"model_type": info.get("model_type").value, "sovits_path": sovits_path, "gpt_path": gpt_path})
                    unload_paths.append(info)
            else:
                model_path, config_path = self.absolute_to_relative_path(info.get("model_path"),
                                                                         info.get("config_path"))
                model_path, config_path = model_path.replace("\\", "/"), config_path.replace("\\", "/")
                if not self.is_path_loaded(model_path, loaded_paths):
                    info.update({"model_path": model_path, "config_path": config_path})
                    unload_paths.append(info)

        return unload_paths

    def is_path_loaded(self, paths, loaded_paths):
        if len(paths) == 2:
            sovits_path, gpt_path = paths
            for loaded_path in loaded_paths:
                if sovits_path == loaded_path[0] and gpt_path == loaded_path[1]:
                    return True
        else:
            path = paths

            for loaded_path in loaded_paths:
                if path == loaded_path:
                    return True

        return False