Spaces:
Sleeping
Sleeping
File size: 26,709 Bytes
960cd20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import gc
import glob
import logging
import os
import traceback
import cpuinfo
import numpy as np
import psutil
import torch
# from contants import config
from contants import config
import utils
from bert_vits2 import Bert_VITS2
from contants import ModelType
from gpt_sovits.gpt_sovits import GPT_SoVITS
from logger import logger
from manager.observer import Subject
from utils.data_utils import HParams, check_is_none
from vits import VITS
from vits.hubert_vits import HuBert_VITS
from vits.w2v2_vits import W2V2_VITS
class ModelManager(Subject):
def __init__(self, device=config.system.device):
self.device = device
self.logger = logger
self.models = {
# ModelType:{model_id: {"model_path": model_path, "config_path": config_path, "model": model,
# "n_speakers": n_speakers}},
# model_id 类型为 int
ModelType.VITS: {},
ModelType.HUBERT_VITS: {},
ModelType.W2V2_VITS: {},
ModelType.BERT_VITS2: {},
ModelType.GPT_SOVITS: {},
}
self.sid2model = {
# ModelType:[{"real_id": real_id, "model": model, "model_id": model_id, "n_speakers": n_speakers}]
ModelType.VITS: [],
ModelType.HUBERT_VITS: [],
ModelType.W2V2_VITS: [],
ModelType.BERT_VITS2: [],
ModelType.GPT_SOVITS: [],
}
self.voice_speakers = {
ModelType.VITS.value: [],
ModelType.HUBERT_VITS.value: [],
ModelType.W2V2_VITS.value: [],
ModelType.BERT_VITS2.value: [],
ModelType.GPT_SOVITS.value: [],
}
self.emotion_reference = None
self.hubert = None
self.dimensional_emotion_model = None
self.tts_front = None
self.bert_models = {}
self.model_handler = None
self.emotion_model = None
self.processor = None
# self.sid2model = []
# self.name_mapping_id = []
self.voice_objs_count = 0
self._observers = []
self.model_class_map = {
ModelType.VITS: VITS,
ModelType.HUBERT_VITS: HuBert_VITS,
ModelType.W2V2_VITS: W2V2_VITS,
ModelType.BERT_VITS2: Bert_VITS2,
ModelType.GPT_SOVITS: GPT_SoVITS,
}
self.available_tts_model = set()
def model_init(self):
if config.tts_config.auto_load:
models = self.scan_path()
else:
models = config.tts_config.asdict().get("models")
for model in models:
self.load_model(model_path=model.get("model_path"),
config_path=model.get("config_path"),
sovits_path=model.get("sovits_path"),
gpt_path=model.get("gpt_path"))
dimensional_emotion_model_path = os.path.join(config.abs_path, config.system.data_path,
config.model_config.dimensional_emotion_model)
if os.path.isfile(dimensional_emotion_model_path):
if self.dimensional_emotion_model is None:
self.dimensional_emotion_model = self.load_dimensional_emotion_model(dimensional_emotion_model_path)
self.log_device_info()
if self.vits_speakers_count != 0:
self.logger.info(f"[{ModelType.VITS.value}] {self.vits_speakers_count} speakers")
if self.hubert_speakers_count != 0:
self.logger.info(f"[{ModelType.HUBERT_VITS.value}] {self.hubert_speakers_count} speakers")
if self.w2v2_speakers_count != 0:
self.logger.info(f"[{ModelType.W2V2_VITS.value}] {self.w2v2_speakers_count} speakers")
if self.bert_vits2_speakers_count != 0:
self.logger.info(f"[{ModelType.BERT_VITS2.value}] {self.bert_vits2_speakers_count} speakers")
if self.gpt_sovits_speakers_count != 0:
self.logger.info(f"[{ModelType.GPT_SOVITS.value}] {self.gpt_sovits_speakers_count} speakers")
self.logger.info(f"{self.speakers_count} speakers in total.")
if self.speakers_count == 0:
self.logger.warning(f"No model was loaded.")
@property
def vits_speakers(self):
return self.voice_speakers[ModelType.VITS]
@property
def speakers_count(self):
return self.vits_speakers_count + self.hubert_speakers_count + self.w2v2_speakers_count + self.bert_vits2_speakers_count + self.gpt_sovits_speakers_count
@property
def vits_speakers_count(self):
return len(self.voice_speakers[ModelType.VITS.value])
@property
def hubert_speakers_count(self):
return len(self.voice_speakers[ModelType.HUBERT_VITS.value])
@property
def w2v2_speakers_count(self):
return len(self.voice_speakers[ModelType.W2V2_VITS.value])
@property
def w2v2_emotion_count(self):
return len(self.emotion_reference) if self.emotion_reference is not None else 0
@property
def bert_vits2_speakers_count(self):
return len(self.voice_speakers[ModelType.BERT_VITS2.value])
@property
def gpt_sovits_speakers_count(self):
return len(self.voice_speakers[ModelType.GPT_SOVITS.value])
# 添加观察者
def attach(self, observer):
self._observers.append(observer)
# 移除观察者
def detach(self, observer):
self._observers.remove(observer)
# 通知所有观察者
def notify(self, event_type, **kwargs):
for observer in self._observers:
observer.update(event_type, **kwargs)
def log_device_info(self):
cuda_available = torch.cuda.is_available()
self.logger.info(
f"PyTorch Version: {torch.__version__} Cuda available:{cuda_available} Device type:{self.device.type}")
if self.device.type == 'cuda':
if cuda_available:
device_name = torch.cuda.get_device_name(self.device.index)
gpu_memory_info = round(torch.cuda.get_device_properties(self.device).total_memory / 1024 ** 3) # GB
self.logger.info(
f"Using GPU on {device_name} {gpu_memory_info}GB, GPU Device Index: {self.device.index}")
else:
self.logger.warning("GPU device specified, but CUDA is not available.")
else:
cpu_info = cpuinfo.get_cpu_info()
cpu_name = cpu_info.get("brand_raw")
cpu_count = psutil.cpu_count(logical=False)
thread_count = psutil.cpu_count(logical=True)
memory_info = psutil.virtual_memory()
total_memory = round(memory_info.total / (1024 ** 3))
self.logger.info(
f"Using CPU on {cpu_name} with {cpu_count} cores and {thread_count} threads. Total memory: {total_memory}GB")
def relative_to_absolute_path(self, *paths):
absolute_paths = []
for path in paths:
if path is None:
return None
path = os.path.normpath(path)
if path.startswith('models'):
path = os.path.join(config.abs_path, config.system.data_path, path)
else:
path = os.path.join(config.abs_path, config.system.data_path, config.tts_config.models_path,
path)
absolute_paths.append(path)
return absolute_paths
def absolute_to_relative_path(self, *paths):
relative_paths = []
for path in paths:
if path is None:
relative_paths.append(None)
continue
# 获取models目录下的相对路径
relative_path = os.path.relpath(path, os.path.join(config.abs_path, config.system.data_path,
config.tts_config.models_path))
relative_paths.append(relative_path)
return relative_paths
def _load_model_from_path(self, model_path, config_path, sovits_path, gpt_path):
if check_is_none(sovits_path, gpt_path):
hps = utils.get_hparams_from_file(config_path)
model_type = self.recognition_model_type(hps)
else:
hps = None
model_type = ModelType.GPT_SOVITS
model_args = {
"model_type": model_type,
"model_path": model_path,
"config_path": config_path,
"sovits_path": sovits_path,
"gpt_path": gpt_path,
"config": hps,
"device": self.device
}
model_class = self.model_class_map[model_type]
model = model_class(**model_args)
if model_type == ModelType.VITS:
bert_embedding = getattr(hps.data, 'bert_embedding', getattr(hps.model, 'bert_embedding', False))
if bert_embedding and self.tts_front is None:
self.load_VITS_PinYin_model(
os.path.join(config.abs_path, config.system.data_path, config.model_config.vits_chinese_bert))
if not config.vits_config.dynamic_loading:
model.load_model()
self.available_tts_model.add(ModelType.VITS.value)
elif model_type == ModelType.W2V2_VITS:
if self.emotion_reference is None:
self.emotion_reference = self.load_npy(
os.path.join(config.abs_path, config.system.data_path, config.model_config.dimensional_emotion_npy))
model.load_model(emotion_reference=self.emotion_reference,
dimensional_emotion_model=self.dimensional_emotion_model)
self.available_tts_model.add(ModelType.W2V2_VITS.value)
elif model_type == ModelType.HUBERT_VITS:
if self.hubert is None:
self.hubert = self.load_hubert_model(
os.path.join(config.abs_path, config.system.data_path, config.model_config.hubert_soft_0d54a1f4))
model.load_model(hubert=self.hubert)
elif model_type == ModelType.BERT_VITS2:
bert_model_names = model.bert_model_names
for bert_model_name in bert_model_names.values():
if self.model_handler is None:
from manager.model_handler import ModelHandler
self.model_handler = ModelHandler(self.device)
self.model_handler.load_bert(bert_model_name)
if model.hps_ms.model.emotion_embedding == 1:
self.model_handler.load_emotion()
elif model.hps_ms.model.emotion_embedding == 2:
self.model_handler.load_clap()
model.load_model(self.model_handler)
self.available_tts_model.add(ModelType.BERT_VITS2.value)
elif model_type == ModelType.GPT_SOVITS:
if self.model_handler is None:
from manager.model_handler import ModelHandler
self.model_handler = ModelHandler(self.device)
self.model_handler.load_ssl()
self.model_handler.load_bert("CHINESE_ROBERTA_WWM_EXT_LARGE")
model.load_model(self.model_handler)
sid2model = []
speakers = []
new_id = len(self.voice_speakers[model_type.value])
model_id = max([-1] + list(self.models[model_type].keys())) + 1
for real_id, name in enumerate(model.speakers):
sid2model.append({"real_id": real_id, "model": model, "model_id": model_id})
speakers.append({"id": new_id, "name": name, "lang": model.lang})
new_id += 1
model_data = {
"model": model,
"model_type": model_type,
"model_id": model_id,
"model_path": model_path,
"config": hps,
"sovits_path": sovits_path,
"gpt_path": gpt_path,
"sid2model": sid2model,
"speakers": speakers
}
if model_type == ModelType.GPT_SOVITS:
logging.info(
f"model_type:{model_type.value} model_id:{model_id} sovits_path:{sovits_path} gpt_path:{gpt_path}")
else:
logging.info(
f"model_type:{model_type.value} model_id:{model_id} n_speakers:{len(speakers)} model_path:{model_path}")
return model_data
def load_model(self, model_path: str, config_path: str, sovits_path: str, gpt_path: str):
try:
if not check_is_none(model_path, config_path):
model_path, config_path = self.relative_to_absolute_path(model_path, config_path)
else:
sovits_path, gpt_path = self.relative_to_absolute_path(sovits_path, gpt_path)
model_data = self._load_model_from_path(model_path, config_path, sovits_path, gpt_path)
model_id = model_data["model_id"]
sid2model = model_data["sid2model"]
model_type = model_data["model_type"]
self.models[model_type][model_id] = {
"model_type": model_data.get("model_type"),
"model_path": model_path,
"config_path": config_path,
"sovits_path": sovits_path,
"gpt_path": gpt_path,
"model": model_data.get("model"),
"n_speakers": len(model_data["speakers"])}
self.sid2model[model_type].extend(sid2model)
self.voice_speakers[model_type.value].extend(model_data["speakers"])
self.notify("model_loaded", model_manager=self)
state = True
except Exception as e:
self.logger.info(f"Loading failed. {e}")
self.logger.error(traceback.format_exc())
state = False
return state
def unload_model(self, model_type_value: str, model_id: str):
state = False
model_type = ModelType(model_type_value)
model_id = int(model_id)
try:
if model_id in self.models[model_type].keys():
model_data = self.models[model_type][model_id]
model = model_data.get("model")
n_speakers = model_data.get("n_speakers")
start = 0
for key, value in self.models[model_type].items():
if key == model_id:
break
start += value.get("n_speakers")
if model_type == ModelType.BERT_VITS2:
for bert_model_name in model.bert_model_names.values():
self.model_handler.release_bert(bert_model_name)
if model.version == "2.1":
self.model_handler.release_emotion()
elif model.version in ["2.2", "extra", "2.4"]:
self.model_handler.release_clap()
elif model_type == ModelType.GPT_SOVITS:
self.model_handler.release_bert("CHINESE_ROBERTA_WWM_EXT_LARGE")
self.model_handler.release_ssl_model()
del self.sid2model[model_type][start:start + n_speakers]
del self.voice_speakers[model_type.value][start:start + n_speakers]
del self.models[model_type][model_id]
for new_id, speaker in enumerate(self.voice_speakers[model_type.value]):
speaker["id"] = new_id
gc.collect()
torch.cuda.empty_cache()
state = True
self.notify("model_unloaded", model_manager=self)
self.logger.info(f"Unloading success.")
except Exception as e:
logging.error(traceback.print_exc())
logging.error(f"Unloading failed. {e}")
state = False
return state
def load_dimensional_emotion_model(self, model_path):
try:
import audonnx
root = os.path.dirname(model_path)
model_file = model_path
dimensional_emotion_model = audonnx.load(root=root, model_file=model_file)
self.notify("model_loaded", model_manager=self)
except Exception as e:
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")
return dimensional_emotion_model
def unload_dimensional_emotion_model(self):
self.dimensional_emotion_model = None
self.notify("model_unloaded", model_manager=self)
def load_hubert_model(self, model_path):
""""HuBERT-VITS"""
try:
from vits.hubert_model import hubert_soft
hubert = hubert_soft(model_path)
except Exception as e:
self.logger.warning(f"Load HUBERT_SOFT_MODEL failed {e}")
return hubert
def unload_hubert_model(self):
self.hubert = None
self.notify("model_unloaded", model_manager=self)
def load_VITS_PinYin_model(self, bert_path):
""""vits_chinese"""
from vits.text.vits_pinyin import VITS_PinYin
if self.tts_front is None:
self.tts_front = VITS_PinYin(bert_path, self.device)
def reorder_model(self, old_index, new_index):
"""重新排序模型,将old_index位置的模型移动到new_index位置"""
if 0 <= old_index < len(self.models) and 0 <= new_index < len(self.models):
model = self.models[old_index]
del self.models[old_index]
self.models.insert(new_index, model)
def get_models_path(self):
"""按返回模型路径列表,列表每一项为{"model_path": model_path, "config_path": config_path}"""
info = []
for models in self.models.values():
for model in models.values():
info.append({
"model_type": model.get("model_type"),
"model_path": model.get("model_path"),
"config_path": model.get("config_path"),
"sovits_path": model.get("sovits_path"),
"gpt_path": model.get("gpt_path"),
})
return info
def get_models_path_by_type(self):
"""按模型类型返回模型路径"""
info = {
ModelType.VITS.value: [],
ModelType.HUBERT_VITS.value: [],
ModelType.W2V2_VITS.value: [],
ModelType.BERT_VITS2.value: [],
ModelType.GPT_SOVITS.value: [],
}
for model_type, models in self.models.items():
for values in models.values():
info[model_type].append(values[0])
return info
def get_models_info(self):
"""按模型类型返回模型文件夹名以及模型文件名,speakers数量"""
info = {
ModelType.VITS.value: [],
ModelType.HUBERT_VITS.value: [],
ModelType.W2V2_VITS.value: [],
ModelType.BERT_VITS2.value: [],
ModelType.GPT_SOVITS.value: [],
}
for model_type, model_data in self.models.items():
if model_type != ModelType.GPT_SOVITS:
for model_id, model in model_data.items():
model_path = model.get("model_path")
config_path = model.get("config_path")
model_path = self.absolute_to_relative_path(model_path)[0].replace("\\", "/")
config_path = self.absolute_to_relative_path(config_path)[0].replace("\\", "/")
info[model_type.value].append(
{"model_id": model_id,
"model_path": model_path,
"config_path": config_path,
"n_speakers": model.get("n_speakers")})
else:
for model_id, model in model_data.items():
sovits_path = model.get("sovits_path")
gpt_path = model.get("gpt_path")
sovits_path = self.absolute_to_relative_path(sovits_path)[0].replace("\\", "/")
gpt_path = self.absolute_to_relative_path(gpt_path)[0].replace("\\", "/")
info[model_type.value].append(
{"model_id": model_id,
"sovits_path": sovits_path,
"gpt_path": gpt_path,
"n_speakers": model.get("n_speakers")})
return info
def get_model_by_index(self, model_type, model_id):
"""根据给定的索引返回模型"""
if 0 <= model_id < len(self.models):
_, model, _ = self.models[model_type][model_id]
return model
return None
# def get_bert_model(self, bert_model_name):
# if bert_model_name not in self.bert_models:
# raise ValueError(f"Model {bert_model_name} not loaded!")
# return self.bert_models[bert_model_name]
def clear_all(self):
"""清除所有模型"""
self.models.clear()
def recognition_model_type(self, hps: HParams) -> str:
# model_config = json.load(model_config_json)
symbols = getattr(hps, "symbols", None)
# symbols = model_config.get("symbols", None)
emotion_embedding = getattr(hps.data, "emotion_embedding", False)
if "use_spk_conditioned_encoder" in hps.model:
model_type = ModelType.BERT_VITS2
return model_type
if symbols != None:
if not emotion_embedding:
mode_type = ModelType.VITS
else:
mode_type = ModelType.W2V2_VITS
else:
mode_type = ModelType.HUBERT_VITS
return mode_type
def _load_npy_from_path(self, path):
model_extention = os.path.splitext(path)[1]
if model_extention != ".npy":
raise ValueError(f"Unsupported model type: {model_extention}")
return np.load(path).reshape(-1, 1024)
def load_npy(self, emotion_reference_npy):
emotion_reference = np.empty((0, 1024))
if isinstance(emotion_reference_npy, list):
for i in emotion_reference_npy:
emotion_reference = np.append(emotion_reference, self._load_npy_from_path(i), axis=0)
elif os.path.isdir(emotion_reference_npy):
for root, dirs, files in os.walk(emotion_reference_npy):
for file_name in files:
if file_name.endswith(".npy"):
file_path = os.path.join(root, file_name)
emotion_reference = np.append(emotion_reference, self._load_npy_from_path(file_path),
axis=0)
elif os.path.isfile(emotion_reference_npy):
emotion_reference = self._load_npy_from_path(emotion_reference_npy)
logging.info(f"Loaded emotional dimention npy range: {len(emotion_reference)}")
return emotion_reference
def scan_path(self):
folder_path = os.path.join(config.abs_path, config.system.data_path, config.tts_config.models_path)
model_paths = glob.glob(folder_path + "/**/*.pth", recursive=True)
all_paths = []
for id, pth_path in enumerate(model_paths):
pth_name = os.path.basename(pth_path)
if pth_name.startswith(("D_", "DUR_")):
continue
dir_name = os.path.dirname(pth_path)
config_paths = glob.glob(dir_name + "/*.json", recursive=True)
gpt_paths = glob.glob(dir_name + "/*.ckpt", recursive=True)
model_path, config_path, sovits_path, gpt_path, model_type = None, None, None, None, None
if len(config_paths) > 0:
model_path = pth_path
config_path = config_paths[0]
elif len(gpt_paths) > 0:
gpt_path = gpt_paths[0]
sovits_path = pth_path
model_type = ModelType.GPT_SOVITS
else:
continue
info = {
"model_id": id,
"model_type": model_type,
"model_path": model_path,
"config_path": config_path,
"sovits_path": sovits_path,
"gpt_path": gpt_path,
}
all_paths.append(info)
return all_paths
def scan_unload_path(self):
all_paths = self.scan_path()
unload_paths = []
loaded_paths = []
loaded_paths_2 = []
for model in self.get_models_path():
# 只取已加载的模型路径
if model.get("model_type") == ModelType.GPT_SOVITS:
sovits_path, gpt_path = self.absolute_to_relative_path(model.get("sovits_path"),
model.get("gpt_path"))
sovits_path, gpt_path = sovits_path.replace("\\", "/"), gpt_path.replace("\\", "/")
loaded_paths_2.append((sovits_path, gpt_path))
else:
model_path = self.absolute_to_relative_path(model.get("model_path"))[0].replace("\\", "/")
loaded_paths.append(model_path)
for info in all_paths:
# 将绝对路径修改为相对路径,并将分隔符格式化为'/'
if info.get("model_type") == ModelType.GPT_SOVITS:
sovits_path, gpt_path = self.absolute_to_relative_path(info.get("sovits_path"),
info.get("gpt_path"))
sovits_path, gpt_path = sovits_path.replace("\\", "/"), gpt_path.replace("\\", "/")
if not self.is_path_loaded((sovits_path, gpt_path), loaded_paths_2):
info.update(
{"model_type": info.get("model_type").value, "sovits_path": sovits_path, "gpt_path": gpt_path})
unload_paths.append(info)
else:
model_path, config_path = self.absolute_to_relative_path(info.get("model_path"),
info.get("config_path"))
model_path, config_path = model_path.replace("\\", "/"), config_path.replace("\\", "/")
if not self.is_path_loaded(model_path, loaded_paths):
info.update({"model_path": model_path, "config_path": config_path})
unload_paths.append(info)
return unload_paths
def is_path_loaded(self, paths, loaded_paths):
if len(paths) == 2:
sovits_path, gpt_path = paths
for loaded_path in loaded_paths:
if sovits_path == loaded_path[0] and gpt_path == loaded_path[1]:
return True
else:
path = paths
for loaded_path in loaded_paths:
if path == loaded_path:
return True
return False
|