File size: 4,320 Bytes
1556304
cd76efc
 
 
1556304
 
 
cd76efc
1556304
 
 
 
 
 
5bd9cae
1c99640
1556304
 
 
 
 
cd76efc
 
 
 
b241b47
1556304
e05cd4e
b241b47
1556304
 
cd76efc
1556304
 
 
 
 
cd76efc
 
 
 
 
e05cd4e
6f346c7
 
 
 
 
b241b47
 
cd76efc
 
 
 
b241b47
1556304
cd76efc
 
 
 
 
 
6f346c7
 
cd76efc
 
6f346c7
 
cd76efc
 
b241b47
cd76efc
 
 
 
e05cd4e
cd76efc
 
1556304
cd76efc
6f346c7
1c99640
cd76efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556304
cd76efc
6f346c7
cd76efc
 
 
 
 
 
1556304
 
b241b47
 
 
 
1556304
6f346c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# L-MChat
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI. <br> To select the Model that you want to use please go to the Adavanced Inputs, the Quality-Model (L-MChat-7b) is activated by default.
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"

model_dict = {
    "Fast-Model": "Artples/L-MChat-Small",
    "Quality-Model": "Artples/L-MChat-7b"
}

@spaces.GPU(enable_queue=True, duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    model_choice: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.1,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    model_id = model_dict[model_choice]
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

chat_interface = gr.ChatInterface(
    theme='ehristoforu/RE_Theme',
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Radio(["Fast-Model", "Quality-Model"], label="Model", value="Quality-Model"),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()