File size: 35,896 Bytes
fd8cfcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/**
 * Soft Actor Critic Agent https://arxiv.org/abs/1812.05905
 * without value network.
 */
const AgentSac = (() => {
    /**
     * Validates the shape of a given tensor. 
     * 
     * @param {Tensor} tensor - tensor whose shape must be validated
     * @param {array} shape - shape to compare with
     * @param {string} [msg = ''] - message for the error
     */
    const assertShape = (tensor, shape, msg = '') => {
        console.assert(
            JSON.stringify(tensor.shape) === JSON.stringify(shape),
            msg + ' shape ' + tensor.shape + ' is not ' + shape)
    }

    // const VERSION = 1 // +100 for bump tower
    // const VERSION = 2 // balls
    // const VERSION = 3 // tests
    // const VERSION = 4 // tests
    // const VERSION = 5 // exp #1
    // const VERSION = 6 // exp #2
    // const VERSION = 7 // exp #3
    // const VERSION = 8 // exp #4
    // const VERSION = 9 // exp #
    // const VERSION = 10 // exp # good, doesn't touch
    // const VERSION = 11 // exp #
    // const VERSION = 12 // exp # 25x25
    // const VERSION = 13 // exp # 25x25 single CNN
    // const VERSION = 15 // 15.1 stable RB 10^5
    // const VERSION = 16 // reward from RL2, rb 10^6, gr/red balls, bad
    // const VERSION = 18 // reward from RL2, CNN from SAC paper, works!
    // const VERSION = 19 // moving balls, super!
    // const VERSION = 20 // moving balls, discret impulse, bad
    // const VERSION = 21 // independant look
    // const VERSION = 22 // dqn arch, bad
    // const VERSION = 23 // dqn trunc, works! fast learn
    // const VERSION = 24 // dqn trunc 3 layers, super and fast
    // const VERSION = 25 // dqn trunc 3 layers 2x512, poor
    // const VERSION = 26 // rl2 cnn arc, bad too many weights
    // const VERSION = 27 // sac cnn 16x6x3->16x4x2->8x3x1->2x256 and 2 clr frames, 2h, kiss, Excellent!
    // const VERSION = 28 // same but 1 frame, works
    // const VERSION = 29 // 1fr w/o accel, poor
    // const VERSION = 30 // 2fr wide img, poor
    // const VERSION = 31 // 2 small imgs, small cnn out, poor
    // const VERSION = 32 // 2fr binacular
    // const VERSION = 33 // 4fr binacular, Good, but poor after reload on wider cage
    // const VERSION = 34 // 4fr binacular, smaller fov=2, angle 0.7, poor
    // const VERSION = 35 // 4fr binacular with dist, poor
    // const VERSION = 36 // 4fr binacular with dist, works but reload not
    // const VERSION = 37 // BCNN achiasma, good -> reload poor
    // const VERSION = 38 // BCNN achiasma, smaller cnn
    // const VERSION = 39 // 1fr BCNN achiasma, smaller cnn, works super fast, 30min
    // const VERSION = 40 // 2fr BCNN achiasma, 2l smaller cnn, poor
    // const VERSION = 41 // 2fr BCNN achiasma, 2l smaller cnn, some perfm after 30min
    // const VERSION = 41 // 1fr BCNN achiasma, 2l smaller cnn, super kiss, reload poor
    // const VERSION = 42 // 2fr BCNN achiasma, 2l smaller cnn, reload poor
    // const VERSION = 43 // 1fr BCNN achiasma, 3l, fov 0.8, 1h good, reload not bad
    // const VERSION = 44 // 2fr BCNN achiasma, 3l, fov 0.8, slow 1h, reload not bad, a bit better than 1fr, degrade
    // const VERSION = 45 // 1fr BCNN achiasma, 2l, fov 0.8, poor
    // const VERSION = 46 // 2fr BCNN achiasma, 2l, fov 0.8, fast 30 min but poor on reload
    // const VERSION = 47 // 1fr BCNN chiasma, 2l, fov 0.7, poor
    // const VERSION = 48 // 2fr BCNN chiasma, 2l, fov 0.7 poor
    // const VERSION = 49 // 1fr BCNN chiasma stacked, 3l, poor
    // const VERSION = 50 // 2fr 2nets monocular, 1h good, reload poor
    // const VERSION = 51 // 1fr 1nets monocular, stuck
    // const VERSION = 52 // 2fr 2nets monocular, poor
    // const VERSION = 53 // 2fr 2nets monocular, 
    // const VERSION = 54 // 2fr binocular
    // const VERSION = 55 // 2fr binocular
    // const VERSION = 56 // 2fr binocular
    // const VERSION = 57 // 1fr binocular, sphere vimeo super
    // const VERSION = 58 // 2fr binocular, sphere
    // const VERSION = 59 // 1fr binocular, sphere
    // const VERSION = 61 // 2fr binocular, sphere, 2lay BASELINE!!! cage 55, mass 2, ball mass 1
    // const VERSION = 62
    //const VERSION = 63 // 1fr 30min! cage 60
    // const VERSION = 64 // 2fr nores
    // const VERSION = 66 // 1fr 30min slightly slower
    // const VERSION = 67 // 2fr 30min as prev
    // const VERSION = 65 // 1fr l/r diff, 30min +400
    // const VERSION = 68 // 1fr l/r diff, 30min -100 good
    // const VERSION = 69 // 1fr l/r diff, 30min -190 good
    // const VERSION = 70 // 1fr l/r diff, 30min -420
    // const VERSION = 71 // 1fr l/r diff, 30min -480
    // const VERSION = 72 // 1fr no diff, 30min 
    // const VERSION = 73 // 1fr no diff, 30min -400 cage 50
    // const VERSION = 74 // 1fr diff, 30min 2.6k!
    // const VERSION = 75 // 1fr diff, 30min -300
    // const VERSION = 76 // 1fr diff, 20min +300!
    // const VERSION = 77 // 1fr diff, 20min +3.5k!
    // const VERSION = 78 // 1fr diff, 30min -90
    // const VERSION = 79 // 1fr NO diff, 25min +158
    // const VERSION = 80 // 1fr NO diff, 30min -200
    // const VERSION = 81 // 1fr NO diff, 20min +1200
    // const VERSION = 82 // 1fr NO diff, 30min
    // const VERSION = 83 // 1fr NO diff, priority 30min -400
    const VERSION = 84 // 1fr diff, 30min

    const LOG_STD_MIN = -20
    const LOG_STD_MAX = 2
    const EPSILON = 1e-8
    const NAME = {
        ACTOR: 'actor',
        Q1: 'q1',
        Q2: 'q2',        
        Q1_TARGET: 'q1-target',
        Q2_TARGET: 'q2-target',
        ALPHA: 'alpha'
    }

    return class AgentSac {
        constructor({
            batchSize = 1, 
            frameShape = [25, 25, 3], 
            nFrames = 1, // Number of stacked frames per state
            nActions = 3, // 3 - impuls, 3 - RGB color
            nTelemetry = 10, // 3 - linear valocity, 3 - acceleration, 3 - collision point, 1 - lidar (tanh of distance)
            gamma = 0.99, // Discount factor (γ)
            tau = 5e-3, // Target smoothing coefficient (τ)
            trainable = true, // Whether the actor is trainable
            verbose = false,
            forced = false, // force to create fresh models (not from checkpoint)
            prefix = '', // for tests,
            sighted = true,
            rewardScale = 10
        } = {}) {
            this._batchSize = batchSize
            this._frameShape = frameShape 
            this._nFrames = nFrames
            this._nActions = nActions
            this._nTelemetry = nTelemetry
            this._gamma = gamma
            this._tau = tau
            this._trainable = trainable
            this._verbose = verbose
            this._inited = false
            this._prefix = (prefix === '' ? '' : prefix + '-')
            this._forced = forced
            this._sighted = sighted
            this._rewardScale = rewardScale
            
            this._frameStackShape = [...this._frameShape.slice(0, 2), this._frameShape[2] * this._nFrames]

            // https://github.com/rail-berkeley/softlearning/blob/13cf187cc93d90f7c217ea2845067491c3c65464/softlearning/algorithms/sac.py#L37
            this._targetEntropy = -nActions
        }

        /**
         * Initialization.
         */
        async init() {
            if (this._inited) throw Error('щ(゚Д゚щ)')

            this._frameInputL = tf.input({batchShape : [null, ...this._frameStackShape]})
            this._frameInputR = tf.input({batchShape : [null, ...this._frameStackShape]})

            this._telemetryInput = tf.input({batchShape : [null, this._nTelemetry]})
            
            this.actor = await this._getActor(this._prefix + NAME.ACTOR, this.trainable)
            
            if (!this._trainable)
                return
            
            this.actorOptimizer = tf.train.adam()

            this._actionInput = tf.input({batchShape : [null, this._nActions]})

            this.q1 = await this._getCritic(this._prefix + NAME.Q1)
            this.q1Optimizer = tf.train.adam()

            this.q2 = await this._getCritic(this._prefix + NAME.Q2)
            this.q2Optimizer = tf.train.adam()

            this.q1Targ = await this._getCritic(this._prefix + NAME.Q1_TARGET, true) // true for batch norm
            this.q2Targ = await this._getCritic(this._prefix + NAME.Q2_TARGET, true)

            this._logAlpha = await this._getLogAlpha(this._prefix + NAME.ALPHA)
            this.alphaOptimizer = tf.train.adam()

            this.updateTargets(1)

            // console.log('weights actorr', this.actor.getWeights().map(w => w.arraySync()))
            // console.log('weights q1q1q1', this.q1.getWeights().map(w => w.arraySync()))
            // console.log('weights q2Targ', this.q2Targ.getWeights().map(w => w.arraySync()))

            this._inited = true
        }

        /**
         * Trains networks on a batch from the replay buffer.
         * 
         * @param {{ state, action, reward, nextState }} - trnsitions in batch
         * @returns {void} nothing
         */
        train({ state, action, reward, nextState }) {
            if (!this._trainable)
                throw new Error('Actor is not trainable')

            return tf.tidy(() => {
                assertShape(state[0], [this._batchSize, this._nTelemetry], 'telemetry')
                assertShape(state[1], [this._batchSize, ...this._frameStackShape], 'frames')
                assertShape(action, [this._batchSize, this._nActions], 'action')
                assertShape(reward, [this._batchSize, 1], 'reward')
                assertShape(nextState[0], [this._batchSize, this._nTelemetry], 'nextState telemetry')
                assertShape(nextState[1], [this._batchSize, ...this._frameStackShape], 'nextState frames')

                this._trainCritics({ state, action, reward, nextState })
                this._trainActor(state)
                this._trainAlpha(state)
                
                this.updateTargets()
            })
        }

        /**
         * Train Q-networks.
         * 
         * @param {{ state, action, reward, nextState }} transition - transition
         */
        _trainCritics({ state, action, reward, nextState }) {
            const getQLossFunction = (() => {
                const [nextFreshAction, logPi] = this.sampleAction(nextState, true)

                const q1TargValue = this.q1Targ.predict(
                    this._sighted ? [...nextState, nextFreshAction] : [nextState[0], nextFreshAction], 
                    {batchSize: this._batchSize})
                const q2TargValue = this.q2Targ.predict(
                    this._sighted ? [...nextState, nextFreshAction] : [nextState[0], nextFreshAction], 
                    {batchSize: this._batchSize})
                
                const qTargValue = tf.minimum(q1TargValue, q2TargValue)
    
                // y = r + γ*(1 - d)*(min(Q1Targ(s', a'), Q2Targ(s', a')) - α*log(π(s'))
                const alpha = this._getAlpha()
                const target = reward.mul(tf.scalar(this._rewardScale)).add(
                    tf.scalar(this._gamma).mul(
                        qTargValue.sub(alpha.mul(logPi))
                    )
                )
                            
                assertShape(nextFreshAction, [this._batchSize, this._nActions], 'nextFreshAction')
                assertShape(logPi, [this._batchSize, 1], 'logPi')
                assertShape(qTargValue, [this._batchSize, 1], 'qTargValue')
                assertShape(target, [this._batchSize, 1], 'target')
    
                return (q) => () => {
                    const qValue = q.predict(
                        this._sighted ? [...state, action] : [state[0], action],
                        {batchSize: this._batchSize})
                    
                    // const loss = tf.scalar(0.5).mul(tf.losses.meanSquaredError(qValue, target))
                    const loss = tf.scalar(0.5).mul(tf.mean(qValue.sub(target).square()))
                    
                    assertShape(qValue, [this._batchSize, 1], 'qValue')

                    return loss
                }
            })()
    
            for (const [q, optimizer] of [
                [this.q1, this.q1Optimizer],
                [this.q2, this.q2Optimizer]
            ]) {
                const qLossFunction = getQLossFunction(q)
    
                const { value, grads } = tf.variableGrads(qLossFunction, q.getWeights(true)) // true means trainableOnly
                
                optimizer.applyGradients(grads)
                
                if (this._verbose) console.log(q.name + ' Loss: ' + value.arraySync())
            }
        }

        /**
         * Train actor networks.
         * 
         * @param {state} state 
         */
        _trainActor(state) {
            // TODO: consider delayed update of policy and targets (if possible)
            const actorLossFunction = () => {
                const [freshAction, logPi] = this.sampleAction(state, true)
                
                const q1Value = this.q1.predict(
                    this._sighted ? [...state, freshAction] : [state[0], freshAction],
                    {batchSize: this._batchSize})
                const q2Value = this.q2.predict(
                    this._sighted ? [...state, freshAction] : [state[0], freshAction], 
                    {batchSize: this._batchSize})
                
                const criticValue = tf.minimum(q1Value, q2Value)

                const alpha = this._getAlpha()
                const loss = alpha.mul(logPi).sub(criticValue)

                assertShape(freshAction, [this._batchSize, this._nActions], 'freshAction')
                assertShape(logPi, [this._batchSize, 1], 'logPi')
                assertShape(q1Value, [this._batchSize, 1], 'q1Value')
                assertShape(criticValue, [this._batchSize, 1], 'criticValue')
                assertShape(loss, [this._batchSize, 1], 'alpha loss')

                return tf.mean(loss)
            }
            
            const { value, grads } = tf.variableGrads(actorLossFunction, this.actor.getWeights(true)) // true means trainableOnly
            
            this.actorOptimizer.applyGradients(grads)

            if (this._verbose) console.log('Actor Loss: ' + value.arraySync())
        }

        _trainAlpha(state) {
            const alphaLossFunction = () => {
                const [, logPi] = this.sampleAction(state, true)

                const alpha = this._getAlpha()
                const loss = tf.scalar(-1).mul(
                    alpha.mul( // TODO: not sure whether this should be alpha or logAlpha
                        logPi.add(tf.scalar(this._targetEntropy))
                    )
                )

                assertShape(loss, [this._batchSize, 1], 'alpha loss')

                return tf.mean(loss)
            }
            
            const { value, grads } = tf.variableGrads(alphaLossFunction, [this._logAlpha]) // true means trainableOnly
            
            this.alphaOptimizer.applyGradients(grads)
            
            if (this._verbose) console.log('Alpha Loss: ' + value.arraySync(), tf.exp(this._logAlpha).arraySync())
        }

        /**
         * Soft update target Q-networks.
         * 
         * @param {number} [tau = this._tau] - smoothing constant τ for exponentially moving average: `wTarg <- wTarg*(1-tau) + w*tau`
         */
        updateTargets(tau = this._tau) {
            tau = tf.scalar(tau)

            const
                q1W = this.q1.getWeights(),
                q2W = this.q2.getWeights(),
                q1WTarg = this.q1Targ.getWeights(),
                q2WTarg = this.q2Targ.getWeights(),
                len = q1W.length

            // console.log('updateTargets q1W', q1W.map(w=>w.arraySync()))
            // console.log('updateTargets q1WTarg', q1WTarg.map(w=>w.arraySync()))

            const calc = (w, wTarg) => wTarg.mul(tf.scalar(1).sub(tau)).add(w.mul(tau))
            
            const w1 = [], w2 = []
            for (let i = 0; i < len; i++) {
                w1.push(calc(q1W[i], q1WTarg[i]))
                w2.push(calc(q2W[i], q2WTarg[i]))
            }
            
            this.q1Targ.setWeights(w1)
            this.q2Targ.setWeights(w2)


        }

        /**
         * Returns actions sampled from normal distribution using means and stds predicted by the actor.
         * 
         * @param {Tensor[]} state - state
         * @param {Tensor} [withLogProbs = false] - whether return log probabilities
         * @returns {Tensor || Tensor[]} action and log policy
         */
        sampleAction(state, withLogProbs = false) { // timer ~3ms
            return tf.tidy(() => {
                let [ mu, logStd ] = this.actor.predict(this._sighted ? state : state[0], {batchSize: this._batchSize})

                // https://github.com/rail-berkeley/rlkit/blob/c81509d982b4d52a6239e7bfe7d2540e3d3cd986/rlkit/torch/sac/policies/gaussian_policy.py#L106
                logStd = tf.clipByValue(logStd, LOG_STD_MIN, LOG_STD_MAX) 
                
                const std = tf.exp(logStd)

                // sample normal N(mu = 0, std = 1)
                const normal = tf.randomNormal(mu.shape, 0, 1.0)
        
                // reparameterization trick: z = mu + std * epsilon
                let pi = mu.add(std.mul(normal))

                let logPi = this._gaussianLikelihood(pi, mu, logStd)

                ;({ pi, logPi } = this._applySquashing(pi, mu, logPi))

                if (!withLogProbs)
                    return pi
        
                return [pi, logPi]
            })
        }

        /**
         * Calculates log probability of normal distribution https://en.wikipedia.org/wiki/Log_probability.
         * Converted to js from https://github.com/tensorflow/probability/blob/f3777158691787d3658b5e80883fe1a933d48989/tensorflow_probability/python/distributions/normal.py#L183
         * 
         * @param {Tensor} x - sample from normal distribution with mean `mu` and std `std`
         * @param {Tensor} mu - mean
         * @param {Tensor} std - standart deviation
         * @returns {Tensor} log probability
         */
        _logProb(x, mu, std)  {
            const logUnnormalized = tf.scalar(-0.5).mul(
                tf.squaredDifference(x.div(std), mu.div(std))
            )
            const logNormalization = tf.scalar(0.5 * Math.log(2 * Math.PI)).add(tf.log(std))
        
            return logUnnormalized.sub(logNormalization)
        }

        /**
         * Gaussian likelihood.
         * Translated from https://github.com/openai/spinningup/blob/038665d62d569055401d91856abb287263096178/spinup/algos/tf1/sac/core.py#L24
         * 
         * @param {Tensor} x - sample from normal distribution with mean `mu` and std `exp(logStd)`
         * @param {Tensor} mu - mean
         * @param {Tensor} logStd - log of standart deviation
         * @returns {Tensor} log probability
         */
        _gaussianLikelihood(x, mu, logStd) {
            // pre_sum = -0.5 * (
            //     ((x-mu)/(tf.exp(log_std)+EPS))**2 
            //     + 2*log_std 
            //     + np.log(2*np.pi)
            // )

            const preSum = tf.scalar(-0.5).mul(
                x.sub(mu).div(
                    tf.exp(logStd).add(tf.scalar(EPSILON))
                ).square()
                .add(tf.scalar(2).mul(logStd))
                .add(tf.scalar(Math.log(2 * Math.PI)))
            )

            return tf.sum(preSum, 1, true)
        }

        /**
         * Adjustment to log probability when squashing action with tanh
         * Enforcing Action Bounds formula derivation https://stats.stackexchange.com/questions/239588/derivation-of-change-of-variables-of-a-probability-density-function
         * Translated from https://github.com/openai/spinningup/blob/038665d62d569055401d91856abb287263096178/spinup/algos/tf1/sac/core.py#L48
         * 
         * @param {*} pi - policy sample
         * @param {*} mu - mean
         * @param {*} logPi - log probability
         * @returns {{ pi, mu, logPi }} squashed and adjasted input
         */
        _applySquashing(pi, mu, logPi) {
            // logp_pi -= tf.reduce_sum(2*(np.log(2) - pi - tf.nn.softplus(-2*pi)), axis=1)

            const adj = tf.scalar(2).mul(
                tf.scalar(Math.log(2))
                .sub(pi)
                .sub(tf.softplus(
                    tf.scalar(-2).mul(pi)
                ))
            )

            logPi = logPi.sub(tf.sum(adj, 1, true))
            mu = tf.tanh(mu)
            pi = tf.tanh(pi)

            return { pi, mu, logPi }
        }

        /**
         * Builds actor network model.
         * 
         * @param {string} [name = 'actor'] - name of the model
         * @param {string} trainable - whether a critic is trainable
         * @returns {tf.LayersModel} model
         */
        async _getActor(name = 'actor', trainable = true) {
            const checkpoint = await this._loadCheckpoint(name)
            if (checkpoint) return checkpoint

            let outputs = this._telemetryInput
            // outputs = tf.layers.dense({units: 128, activation: 'relu'}).apply(outputs)

            if (this._sighted) {
                let convOutputL = this._getConvEncoder(this._frameInputL)
                let convOutputR = this._getConvEncoder(this._frameInputR)
                // let convOutput = tf.layers.concatenate().apply([convOutputL, convOutputR])
                // convOutput = tf.layers.dense({units: 10, activation: 'relu'}).apply(convOutput)

                outputs = tf.layers.concatenate().apply([convOutputL, convOutputR, outputs])
            }

            outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
            outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)

            const mu     = tf.layers.dense({units: this._nActions}).apply(outputs)
            const logStd = tf.layers.dense({units: this._nActions}).apply(outputs)

            const model = tf.model({inputs: this._sighted ? [this._telemetryInput, this._frameInputL, this._frameInputR] : [this._telemetryInput], outputs: [mu, logStd], name})
            model.trainable = trainable

            if (this._verbose) {
                console.log('==========================')
                console.log('==========================')
                console.log('Actor ' + name + ': ')

                model.summary()
            }

            return model
        }

        /**
         * Builds a critic network model.
         * 
         * @param {string} [name = 'critic'] - name of the model
         * @param {string} trainable - whether a critic is trainable
         * @returns {tf.LayersModel} model
         */
        async _getCritic(name = 'critic', trainable = true) {
            const checkpoint = await this._loadCheckpoint(name)
            if (checkpoint) return checkpoint

            let outputs = tf.layers.concatenate().apply([this._telemetryInput, this._actionInput])
            // outputs = tf.layers.dense({units: 128, activation: 'relu'}).apply(outputs)

            if (this._sighted) {
                let convOutputL = this._getConvEncoder(this._frameInputL)
                let convOutputR = this._getConvEncoder(this._frameInputR)
                // let convOutput = tf.layers.concatenate().apply([convOutputL, convOutputR])
                // convOutput = tf.layers.dense({units: 10, activation: 'relu'}).apply(convOutput)

                outputs = tf.layers.concatenate().apply([convOutputL, convOutputR, outputs])
            }

            outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
            outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)

            outputs = tf.layers.dense({units: 1}).apply(outputs)

            const model = tf.model({
                inputs: this._sighted 
                    ? [this._telemetryInput, this._frameInputL, this._frameInputR, this._actionInput] 
                    : [this._telemetryInput, this._actionInput],
                outputs, name
            })

            model.trainable = trainable

            if (this._verbose) {
                console.log('==========================')
                console.log('==========================')
                console.log('CRITIC ' + name + ': ')
        
                model.summary()
            }

            return model
        }

        // _encoder = null
        // _getConvEncoder(inputs) {
        //     if (!this._encoder)
        //         this._encoder = this.__getConvEncoder(inputs)
            
        //     return this._encoder
        // }

        /**
         * Builds convolutional part of a network.
         * 
         * @param {Tensor} inputs - input for the conv layers
         * @returns outputs
         */
         _getConvEncoder(inputs) {
            const kernelSize = 3
            const padding = 'valid'
            const poolSize = 3
            const strides = 1
            // const depthwiseInitializer = 'heNormal'
            // const pointwiseInitializer = 'heNormal'
            const kernelInitializer = 'glorotNormal'
            const biasInitializer = 'glorotNormal'

            let outputs = inputs
            
            // 32x8x4 -> 64x4x2 -> 64x3x1 -> 64x4x1
            outputs = tf.layers.conv2d({
                filters: 16,
                kernelSize: 5,
                strides: 2,
                padding,
                kernelInitializer,
                biasInitializer,
                activation: 'relu',
                trainable: true
            }).apply(outputs)
            outputs = tf.layers.maxPooling2d({poolSize:2}).apply(outputs)
            // 
            // outputs = tf.layers.layerNormalization().apply(outputs)

            outputs = tf.layers.conv2d({
                filters: 16,
                kernelSize: 3,
                strides: 1,
                padding,
                kernelInitializer,
                biasInitializer,
                activation: 'relu',
                trainable: true
            }).apply(outputs)
            outputs = tf.layers.maxPooling2d({poolSize:2}).apply(outputs)

            // outputs = tf.layers.layerNormalization().apply(outputs)
            
            // outputs = tf.layers.conv2d({
            //     filters: 12,
            //     kernelSize: 3,
            //     strides: 1,
            //     padding,
            //     kernelInitializer,
            //     biasInitializer,
            //     activation: 'relu',
            //     trainable: true
            // }).apply(outputs)

            // outputs = tf.layers.conv2d({
            //     filters: 10,
            //     kernelSize: 2,
            //     strides: 1,
            //     padding,
            //     kernelInitializer,
            //     biasInitializer,
            //     activation: 'relu',
            //     trainable: true
            // }).apply(outputs)

            // outputs = tf.layers.conv2d({
            //     filters: 64,
            //     kernelSize: 4,
            //     strides: 1,
            //     padding,
            //     kernelInitializer,
            //     biasInitializer,
            //     activation: 'relu'
            // }).apply(outputs)

            // outputs = tf.layers.batchNormalization().apply(outputs)

            // outputs = tf.layers.layerNormalization().apply(outputs)

            outputs = tf.layers.flatten().apply(outputs)

            // convOutputs = tf.layers.dense({units: 96, activation: 'relu'}).apply(convOutputs)

            return outputs
        }

        /**
         * Returns clipped alpha.
         * 
         * @returns {Tensor} entropy
         */
        _getAlpha() {
            // return tf.maximum(tf.exp(this._logAlpha), tf.scalar(this._minAlpha))
            return tf.exp(this._logAlpha)
        }

        /**
         * Builds a log of entropy scale (α) for training.
         * 
         * @param {string} name 
         * @returns {tf.Variable} trainable variable for log entropy
         */
        async _getLogAlpha(name = 'alpha') {
            let logAlpha = 0.0

            const checkpoint = await this._loadCheckpoint(name)
            if (checkpoint) {
                logAlpha = checkpoint.getWeights()[0].arraySync()[0][0]

                if (this._verbose)
                    console.log('Checkpoint alpha: ', logAlpha)
                    
                this._logAlphaPlaceholder = checkpoint
            } else {
                const model = tf.sequential({ name });
                model.add(tf.layers.dense({ units: 1, inputShape: [1], useBias: false }))
                model.setWeights([tf.tensor([logAlpha], [1, 1])])

                this._logAlphaPlaceholder = model
            }

            return tf.variable(tf.scalar(logAlpha), true) // true -> trainable
        }

        /**
         * Saves all agent's models to the storage.
         */
        async checkpoint() {
            if (!this._trainable) throw new Error('(╭ರ_ ⊙ )')

            this._logAlphaPlaceholder.setWeights([tf.tensor([this._logAlpha.arraySync()], [1, 1])])

            await Promise.all([
                this._saveCheckpoint(this.actor),
                this._saveCheckpoint(this.q1),
                this._saveCheckpoint(this.q2),
                this._saveCheckpoint(this.q1Targ),
                this._saveCheckpoint(this.q2Targ),
                this._saveCheckpoint(this._logAlphaPlaceholder)
            ])

            if (this._verbose) 
                console.log('Checkpoint succesfully saved')
        }

        /**
         * Saves a model to the storage.
         * 
         * @param {tf.LayersModel} model 
         */
        async _saveCheckpoint(model) {
            const key = this._getChKey(model.name)
            const saveResults = await model.save(key)

            if (this._verbose) 
                console.log('Checkpoint saveResults', model.name, saveResults)
        }

        /**
         * Loads saved checkpoint from the storage.
         * 
         * @param {string} name model name
         * @returns {tf.LayersModel} model
         */
        async _loadCheckpoint(name) {
// return
            if (this._forced) {
                console.log('Forced to not load from the checkpoint ' + name)
                return
            }

            const key = this._getChKey(name)
            const modelsInfo = await tf.io.listModels()

            if (key in modelsInfo) {
                const model = await tf.loadLayersModel(key)

                if (this._verbose) 
                    console.log('Loaded checkpoint for ' + name)

                return model
            }
            
            if (this._verbose) 
                console.log('Checkpoint not found for ' + name)
        }
        
        /**
         * Builds the key for the model weights in LocalStorage.
         * 
         * @param {tf.LayersModel} name model name
         * @returns {string} key
         */
        _getChKey(name) {
            return 'indexeddb://' + name + '-' + VERSION
        }
    }
})()

/* TESTS */
;(async () => {
    return 

    // https://www.wolframalpha.com/input/?i2d=true&i=y%5C%2840%29x%5C%2844%29+%CE%BC%5C%2844%29+%CF%83%5C%2841%29+%3D+ln%5C%2840%29Divide%5B1%2CSqrt%5B2*%CF%80*Power%5B%CF%83%2C2%5D%5D%5D*Exp%5B-Divide%5B1%2C2%5D*%5C%2840%29Divide%5BPower%5B%5C%2840%29x-%CE%BC%5C%2841%29%2C2%5D%2CPower%5B%CF%83%2C2%5D%5D%5C%2841%29%5D%5C%2841%29
    ;(() => {
        const agent = new AgentSac()

        const 
            mu = tf.tensor([0], [1, 1]),     // mu = 0
            logStd = tf.tensor([0], [1, 1]), // logStd = 0
            std = tf.exp(logStd),            // std = 1
            normal = tf.tensor([0], [1, 1]), // N = 0
            pi = mu.add(std.mul(normal))     // x = 0
    
        const log = agent._gaussianLikelihood(pi, mu, logStd)

        console.assert(log.arraySync()[0][0].toFixed(5) === '-0.91894', 
            'test Gaussian Likelihood for μ=0, σ=1, x=0')
    })()

    ;(() => {
        const agent = new AgentSac()

        const 
            mu = tf.tensor([1], [1, 1]),     // mu = 1
            logStd = tf.tensor([1], [1, 1]), // logStd = 1
            std = tf.exp(logStd),            // std = e
            normal = tf.tensor([0], [1, 1]), // N = 0
            pi = mu.add(std.mul(normal))    // x = 1
    
        const log = agent._gaussianLikelihood(pi, mu, logStd)

        console.assert(log.arraySync()[0][0].toFixed(5) === '-1.91894',
            'test Gaussian Likelihood for μ=1, σ=e, x=0')
    })()

    ;(() => {
        const agent = new AgentSac()

        const 
            mu = tf.tensor([1], [1, 1]),     // mu = -1
            logStd = tf.tensor([1], [1, 1]), // logStd = 1
            std = tf.exp(logStd),            // std = e
            normal = tf.tensor([0.1], [1, 1]), // N = 0
            pi = mu.add(std.mul(normal))    // x = -1.27182818
    
        const logPi = agent._gaussianLikelihood(pi, mu, logStd)
        const { pi: piSquashed, logPi: logPiSquashed } = agent._applySquashing(pi, mu, logPi)

        const logProbBounded = logPi.sub(
          tf.log(
            tf.scalar(1)
              .sub(tf.tanh(pi).pow(tf.scalar(2)))
              // .add(EPSILON)
          )
        ).sum(1, true)
        
        console.assert(logPi.arraySync()[0][0].toFixed(5) === '-1.92394',
            'test Gaussian Likelihood for μ=-1, σ=e, x=-1.27182818')

        console.assert(logPiSquashed.arraySync()[0][0].toFixed(5) === logProbBounded.arraySync()[0][0].toFixed(5),
            'test logPiSquashed for μ=-1, σ=e, x=-1.27182818')

        console.assert(piSquashed.arraySync()[0][0].toFixed(5) === tf.tanh(pi).arraySync()[0][0].toFixed(5),
            'test piSquashed for μ=-1, σ=e, x=-1.27182818')
    })()

    await (async () => {
        const state = tf.tensor([
            0.5, 0.3, -0.9,
            0, -0.8, 1,
            -0.3, 0.04, 0.02,
            0.9
        ], [1, 10])

        const action = tf.tensor([
            0.1, -1, -0.4,
            1, -0.8, -0.8, -0.2,
            0.04, 0.02, 0.001
        ], [1, 10])
        
        const fresh = new AgentSac({ prefix: 'test', forced: true })
        await fresh.init()
        await fresh.checkpoint()
        
        const saved = new AgentSac({ prefix: 'test' })
        await saved.init()
        
        let frPred, saPred

        frPred = fresh.actor.predict(state, {batchSize: 1})
        saPred = saved.actor.predict(state, {batchSize: 1})
        console.assert(
            frPred[0].arraySync().length > 0 &&
            frPred[1].arraySync().length > 0 &&
            frPred[0].arraySync().join(';') === saPred[0].arraySync().join(';') &&
            frPred[1].arraySync().join(';') === saPred[1].arraySync().join(';'),
            'Models loaded from the checkpoint should be the same')
        
        frPred = fresh.q1.predict([state, action], {batchSize: 1})
        saPred = fresh.q1Targ.predict([state, action], {batchSize: 1})
        console.assert(
            frPred.arraySync()[0][0] !== undefined &&
            frPred.arraySync()[0][0] === saPred.arraySync()[0][0],
            'Q1 and Q1-target should be the same')

        frPred = fresh.q2.predict([state, action], {batchSize: 1})
        saPred = saved.q2.predict([state, action], {batchSize: 1})
        console.assert(
            frPred.arraySync()[0][0] !== undefined &&
            frPred.arraySync()[0][0] === saPred.arraySync()[0][0],
            'Q and Q restored should be the same')

        console.assert(
            fresh._logAlpha.arraySync() !== undefined &&
            fresh._logAlpha.arraySync() === fresh._logAlpha.arraySync(),
            'Q and Q restored should be the same')
    })()
})()