Spaces:
Running
Running
File size: 35,896 Bytes
fd8cfcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
/**
* Soft Actor Critic Agent https://arxiv.org/abs/1812.05905
* without value network.
*/
const AgentSac = (() => {
/**
* Validates the shape of a given tensor.
*
* @param {Tensor} tensor - tensor whose shape must be validated
* @param {array} shape - shape to compare with
* @param {string} [msg = ''] - message for the error
*/
const assertShape = (tensor, shape, msg = '') => {
console.assert(
JSON.stringify(tensor.shape) === JSON.stringify(shape),
msg + ' shape ' + tensor.shape + ' is not ' + shape)
}
// const VERSION = 1 // +100 for bump tower
// const VERSION = 2 // balls
// const VERSION = 3 // tests
// const VERSION = 4 // tests
// const VERSION = 5 // exp #1
// const VERSION = 6 // exp #2
// const VERSION = 7 // exp #3
// const VERSION = 8 // exp #4
// const VERSION = 9 // exp #
// const VERSION = 10 // exp # good, doesn't touch
// const VERSION = 11 // exp #
// const VERSION = 12 // exp # 25x25
// const VERSION = 13 // exp # 25x25 single CNN
// const VERSION = 15 // 15.1 stable RB 10^5
// const VERSION = 16 // reward from RL2, rb 10^6, gr/red balls, bad
// const VERSION = 18 // reward from RL2, CNN from SAC paper, works!
// const VERSION = 19 // moving balls, super!
// const VERSION = 20 // moving balls, discret impulse, bad
// const VERSION = 21 // independant look
// const VERSION = 22 // dqn arch, bad
// const VERSION = 23 // dqn trunc, works! fast learn
// const VERSION = 24 // dqn trunc 3 layers, super and fast
// const VERSION = 25 // dqn trunc 3 layers 2x512, poor
// const VERSION = 26 // rl2 cnn arc, bad too many weights
// const VERSION = 27 // sac cnn 16x6x3->16x4x2->8x3x1->2x256 and 2 clr frames, 2h, kiss, Excellent!
// const VERSION = 28 // same but 1 frame, works
// const VERSION = 29 // 1fr w/o accel, poor
// const VERSION = 30 // 2fr wide img, poor
// const VERSION = 31 // 2 small imgs, small cnn out, poor
// const VERSION = 32 // 2fr binacular
// const VERSION = 33 // 4fr binacular, Good, but poor after reload on wider cage
// const VERSION = 34 // 4fr binacular, smaller fov=2, angle 0.7, poor
// const VERSION = 35 // 4fr binacular with dist, poor
// const VERSION = 36 // 4fr binacular with dist, works but reload not
// const VERSION = 37 // BCNN achiasma, good -> reload poor
// const VERSION = 38 // BCNN achiasma, smaller cnn
// const VERSION = 39 // 1fr BCNN achiasma, smaller cnn, works super fast, 30min
// const VERSION = 40 // 2fr BCNN achiasma, 2l smaller cnn, poor
// const VERSION = 41 // 2fr BCNN achiasma, 2l smaller cnn, some perfm after 30min
// const VERSION = 41 // 1fr BCNN achiasma, 2l smaller cnn, super kiss, reload poor
// const VERSION = 42 // 2fr BCNN achiasma, 2l smaller cnn, reload poor
// const VERSION = 43 // 1fr BCNN achiasma, 3l, fov 0.8, 1h good, reload not bad
// const VERSION = 44 // 2fr BCNN achiasma, 3l, fov 0.8, slow 1h, reload not bad, a bit better than 1fr, degrade
// const VERSION = 45 // 1fr BCNN achiasma, 2l, fov 0.8, poor
// const VERSION = 46 // 2fr BCNN achiasma, 2l, fov 0.8, fast 30 min but poor on reload
// const VERSION = 47 // 1fr BCNN chiasma, 2l, fov 0.7, poor
// const VERSION = 48 // 2fr BCNN chiasma, 2l, fov 0.7 poor
// const VERSION = 49 // 1fr BCNN chiasma stacked, 3l, poor
// const VERSION = 50 // 2fr 2nets monocular, 1h good, reload poor
// const VERSION = 51 // 1fr 1nets monocular, stuck
// const VERSION = 52 // 2fr 2nets monocular, poor
// const VERSION = 53 // 2fr 2nets monocular,
// const VERSION = 54 // 2fr binocular
// const VERSION = 55 // 2fr binocular
// const VERSION = 56 // 2fr binocular
// const VERSION = 57 // 1fr binocular, sphere vimeo super
// const VERSION = 58 // 2fr binocular, sphere
// const VERSION = 59 // 1fr binocular, sphere
// const VERSION = 61 // 2fr binocular, sphere, 2lay BASELINE!!! cage 55, mass 2, ball mass 1
// const VERSION = 62
//const VERSION = 63 // 1fr 30min! cage 60
// const VERSION = 64 // 2fr nores
// const VERSION = 66 // 1fr 30min slightly slower
// const VERSION = 67 // 2fr 30min as prev
// const VERSION = 65 // 1fr l/r diff, 30min +400
// const VERSION = 68 // 1fr l/r diff, 30min -100 good
// const VERSION = 69 // 1fr l/r diff, 30min -190 good
// const VERSION = 70 // 1fr l/r diff, 30min -420
// const VERSION = 71 // 1fr l/r diff, 30min -480
// const VERSION = 72 // 1fr no diff, 30min
// const VERSION = 73 // 1fr no diff, 30min -400 cage 50
// const VERSION = 74 // 1fr diff, 30min 2.6k!
// const VERSION = 75 // 1fr diff, 30min -300
// const VERSION = 76 // 1fr diff, 20min +300!
// const VERSION = 77 // 1fr diff, 20min +3.5k!
// const VERSION = 78 // 1fr diff, 30min -90
// const VERSION = 79 // 1fr NO diff, 25min +158
// const VERSION = 80 // 1fr NO diff, 30min -200
// const VERSION = 81 // 1fr NO diff, 20min +1200
// const VERSION = 82 // 1fr NO diff, 30min
// const VERSION = 83 // 1fr NO diff, priority 30min -400
const VERSION = 84 // 1fr diff, 30min
const LOG_STD_MIN = -20
const LOG_STD_MAX = 2
const EPSILON = 1e-8
const NAME = {
ACTOR: 'actor',
Q1: 'q1',
Q2: 'q2',
Q1_TARGET: 'q1-target',
Q2_TARGET: 'q2-target',
ALPHA: 'alpha'
}
return class AgentSac {
constructor({
batchSize = 1,
frameShape = [25, 25, 3],
nFrames = 1, // Number of stacked frames per state
nActions = 3, // 3 - impuls, 3 - RGB color
nTelemetry = 10, // 3 - linear valocity, 3 - acceleration, 3 - collision point, 1 - lidar (tanh of distance)
gamma = 0.99, // Discount factor (γ)
tau = 5e-3, // Target smoothing coefficient (τ)
trainable = true, // Whether the actor is trainable
verbose = false,
forced = false, // force to create fresh models (not from checkpoint)
prefix = '', // for tests,
sighted = true,
rewardScale = 10
} = {}) {
this._batchSize = batchSize
this._frameShape = frameShape
this._nFrames = nFrames
this._nActions = nActions
this._nTelemetry = nTelemetry
this._gamma = gamma
this._tau = tau
this._trainable = trainable
this._verbose = verbose
this._inited = false
this._prefix = (prefix === '' ? '' : prefix + '-')
this._forced = forced
this._sighted = sighted
this._rewardScale = rewardScale
this._frameStackShape = [...this._frameShape.slice(0, 2), this._frameShape[2] * this._nFrames]
// https://github.com/rail-berkeley/softlearning/blob/13cf187cc93d90f7c217ea2845067491c3c65464/softlearning/algorithms/sac.py#L37
this._targetEntropy = -nActions
}
/**
* Initialization.
*/
async init() {
if (this._inited) throw Error('щ(゚Д゚щ)')
this._frameInputL = tf.input({batchShape : [null, ...this._frameStackShape]})
this._frameInputR = tf.input({batchShape : [null, ...this._frameStackShape]})
this._telemetryInput = tf.input({batchShape : [null, this._nTelemetry]})
this.actor = await this._getActor(this._prefix + NAME.ACTOR, this.trainable)
if (!this._trainable)
return
this.actorOptimizer = tf.train.adam()
this._actionInput = tf.input({batchShape : [null, this._nActions]})
this.q1 = await this._getCritic(this._prefix + NAME.Q1)
this.q1Optimizer = tf.train.adam()
this.q2 = await this._getCritic(this._prefix + NAME.Q2)
this.q2Optimizer = tf.train.adam()
this.q1Targ = await this._getCritic(this._prefix + NAME.Q1_TARGET, true) // true for batch norm
this.q2Targ = await this._getCritic(this._prefix + NAME.Q2_TARGET, true)
this._logAlpha = await this._getLogAlpha(this._prefix + NAME.ALPHA)
this.alphaOptimizer = tf.train.adam()
this.updateTargets(1)
// console.log('weights actorr', this.actor.getWeights().map(w => w.arraySync()))
// console.log('weights q1q1q1', this.q1.getWeights().map(w => w.arraySync()))
// console.log('weights q2Targ', this.q2Targ.getWeights().map(w => w.arraySync()))
this._inited = true
}
/**
* Trains networks on a batch from the replay buffer.
*
* @param {{ state, action, reward, nextState }} - trnsitions in batch
* @returns {void} nothing
*/
train({ state, action, reward, nextState }) {
if (!this._trainable)
throw new Error('Actor is not trainable')
return tf.tidy(() => {
assertShape(state[0], [this._batchSize, this._nTelemetry], 'telemetry')
assertShape(state[1], [this._batchSize, ...this._frameStackShape], 'frames')
assertShape(action, [this._batchSize, this._nActions], 'action')
assertShape(reward, [this._batchSize, 1], 'reward')
assertShape(nextState[0], [this._batchSize, this._nTelemetry], 'nextState telemetry')
assertShape(nextState[1], [this._batchSize, ...this._frameStackShape], 'nextState frames')
this._trainCritics({ state, action, reward, nextState })
this._trainActor(state)
this._trainAlpha(state)
this.updateTargets()
})
}
/**
* Train Q-networks.
*
* @param {{ state, action, reward, nextState }} transition - transition
*/
_trainCritics({ state, action, reward, nextState }) {
const getQLossFunction = (() => {
const [nextFreshAction, logPi] = this.sampleAction(nextState, true)
const q1TargValue = this.q1Targ.predict(
this._sighted ? [...nextState, nextFreshAction] : [nextState[0], nextFreshAction],
{batchSize: this._batchSize})
const q2TargValue = this.q2Targ.predict(
this._sighted ? [...nextState, nextFreshAction] : [nextState[0], nextFreshAction],
{batchSize: this._batchSize})
const qTargValue = tf.minimum(q1TargValue, q2TargValue)
// y = r + γ*(1 - d)*(min(Q1Targ(s', a'), Q2Targ(s', a')) - α*log(π(s'))
const alpha = this._getAlpha()
const target = reward.mul(tf.scalar(this._rewardScale)).add(
tf.scalar(this._gamma).mul(
qTargValue.sub(alpha.mul(logPi))
)
)
assertShape(nextFreshAction, [this._batchSize, this._nActions], 'nextFreshAction')
assertShape(logPi, [this._batchSize, 1], 'logPi')
assertShape(qTargValue, [this._batchSize, 1], 'qTargValue')
assertShape(target, [this._batchSize, 1], 'target')
return (q) => () => {
const qValue = q.predict(
this._sighted ? [...state, action] : [state[0], action],
{batchSize: this._batchSize})
// const loss = tf.scalar(0.5).mul(tf.losses.meanSquaredError(qValue, target))
const loss = tf.scalar(0.5).mul(tf.mean(qValue.sub(target).square()))
assertShape(qValue, [this._batchSize, 1], 'qValue')
return loss
}
})()
for (const [q, optimizer] of [
[this.q1, this.q1Optimizer],
[this.q2, this.q2Optimizer]
]) {
const qLossFunction = getQLossFunction(q)
const { value, grads } = tf.variableGrads(qLossFunction, q.getWeights(true)) // true means trainableOnly
optimizer.applyGradients(grads)
if (this._verbose) console.log(q.name + ' Loss: ' + value.arraySync())
}
}
/**
* Train actor networks.
*
* @param {state} state
*/
_trainActor(state) {
// TODO: consider delayed update of policy and targets (if possible)
const actorLossFunction = () => {
const [freshAction, logPi] = this.sampleAction(state, true)
const q1Value = this.q1.predict(
this._sighted ? [...state, freshAction] : [state[0], freshAction],
{batchSize: this._batchSize})
const q2Value = this.q2.predict(
this._sighted ? [...state, freshAction] : [state[0], freshAction],
{batchSize: this._batchSize})
const criticValue = tf.minimum(q1Value, q2Value)
const alpha = this._getAlpha()
const loss = alpha.mul(logPi).sub(criticValue)
assertShape(freshAction, [this._batchSize, this._nActions], 'freshAction')
assertShape(logPi, [this._batchSize, 1], 'logPi')
assertShape(q1Value, [this._batchSize, 1], 'q1Value')
assertShape(criticValue, [this._batchSize, 1], 'criticValue')
assertShape(loss, [this._batchSize, 1], 'alpha loss')
return tf.mean(loss)
}
const { value, grads } = tf.variableGrads(actorLossFunction, this.actor.getWeights(true)) // true means trainableOnly
this.actorOptimizer.applyGradients(grads)
if (this._verbose) console.log('Actor Loss: ' + value.arraySync())
}
_trainAlpha(state) {
const alphaLossFunction = () => {
const [, logPi] = this.sampleAction(state, true)
const alpha = this._getAlpha()
const loss = tf.scalar(-1).mul(
alpha.mul( // TODO: not sure whether this should be alpha or logAlpha
logPi.add(tf.scalar(this._targetEntropy))
)
)
assertShape(loss, [this._batchSize, 1], 'alpha loss')
return tf.mean(loss)
}
const { value, grads } = tf.variableGrads(alphaLossFunction, [this._logAlpha]) // true means trainableOnly
this.alphaOptimizer.applyGradients(grads)
if (this._verbose) console.log('Alpha Loss: ' + value.arraySync(), tf.exp(this._logAlpha).arraySync())
}
/**
* Soft update target Q-networks.
*
* @param {number} [tau = this._tau] - smoothing constant τ for exponentially moving average: `wTarg <- wTarg*(1-tau) + w*tau`
*/
updateTargets(tau = this._tau) {
tau = tf.scalar(tau)
const
q1W = this.q1.getWeights(),
q2W = this.q2.getWeights(),
q1WTarg = this.q1Targ.getWeights(),
q2WTarg = this.q2Targ.getWeights(),
len = q1W.length
// console.log('updateTargets q1W', q1W.map(w=>w.arraySync()))
// console.log('updateTargets q1WTarg', q1WTarg.map(w=>w.arraySync()))
const calc = (w, wTarg) => wTarg.mul(tf.scalar(1).sub(tau)).add(w.mul(tau))
const w1 = [], w2 = []
for (let i = 0; i < len; i++) {
w1.push(calc(q1W[i], q1WTarg[i]))
w2.push(calc(q2W[i], q2WTarg[i]))
}
this.q1Targ.setWeights(w1)
this.q2Targ.setWeights(w2)
}
/**
* Returns actions sampled from normal distribution using means and stds predicted by the actor.
*
* @param {Tensor[]} state - state
* @param {Tensor} [withLogProbs = false] - whether return log probabilities
* @returns {Tensor || Tensor[]} action and log policy
*/
sampleAction(state, withLogProbs = false) { // timer ~3ms
return tf.tidy(() => {
let [ mu, logStd ] = this.actor.predict(this._sighted ? state : state[0], {batchSize: this._batchSize})
// https://github.com/rail-berkeley/rlkit/blob/c81509d982b4d52a6239e7bfe7d2540e3d3cd986/rlkit/torch/sac/policies/gaussian_policy.py#L106
logStd = tf.clipByValue(logStd, LOG_STD_MIN, LOG_STD_MAX)
const std = tf.exp(logStd)
// sample normal N(mu = 0, std = 1)
const normal = tf.randomNormal(mu.shape, 0, 1.0)
// reparameterization trick: z = mu + std * epsilon
let pi = mu.add(std.mul(normal))
let logPi = this._gaussianLikelihood(pi, mu, logStd)
;({ pi, logPi } = this._applySquashing(pi, mu, logPi))
if (!withLogProbs)
return pi
return [pi, logPi]
})
}
/**
* Calculates log probability of normal distribution https://en.wikipedia.org/wiki/Log_probability.
* Converted to js from https://github.com/tensorflow/probability/blob/f3777158691787d3658b5e80883fe1a933d48989/tensorflow_probability/python/distributions/normal.py#L183
*
* @param {Tensor} x - sample from normal distribution with mean `mu` and std `std`
* @param {Tensor} mu - mean
* @param {Tensor} std - standart deviation
* @returns {Tensor} log probability
*/
_logProb(x, mu, std) {
const logUnnormalized = tf.scalar(-0.5).mul(
tf.squaredDifference(x.div(std), mu.div(std))
)
const logNormalization = tf.scalar(0.5 * Math.log(2 * Math.PI)).add(tf.log(std))
return logUnnormalized.sub(logNormalization)
}
/**
* Gaussian likelihood.
* Translated from https://github.com/openai/spinningup/blob/038665d62d569055401d91856abb287263096178/spinup/algos/tf1/sac/core.py#L24
*
* @param {Tensor} x - sample from normal distribution with mean `mu` and std `exp(logStd)`
* @param {Tensor} mu - mean
* @param {Tensor} logStd - log of standart deviation
* @returns {Tensor} log probability
*/
_gaussianLikelihood(x, mu, logStd) {
// pre_sum = -0.5 * (
// ((x-mu)/(tf.exp(log_std)+EPS))**2
// + 2*log_std
// + np.log(2*np.pi)
// )
const preSum = tf.scalar(-0.5).mul(
x.sub(mu).div(
tf.exp(logStd).add(tf.scalar(EPSILON))
).square()
.add(tf.scalar(2).mul(logStd))
.add(tf.scalar(Math.log(2 * Math.PI)))
)
return tf.sum(preSum, 1, true)
}
/**
* Adjustment to log probability when squashing action with tanh
* Enforcing Action Bounds formula derivation https://stats.stackexchange.com/questions/239588/derivation-of-change-of-variables-of-a-probability-density-function
* Translated from https://github.com/openai/spinningup/blob/038665d62d569055401d91856abb287263096178/spinup/algos/tf1/sac/core.py#L48
*
* @param {*} pi - policy sample
* @param {*} mu - mean
* @param {*} logPi - log probability
* @returns {{ pi, mu, logPi }} squashed and adjasted input
*/
_applySquashing(pi, mu, logPi) {
// logp_pi -= tf.reduce_sum(2*(np.log(2) - pi - tf.nn.softplus(-2*pi)), axis=1)
const adj = tf.scalar(2).mul(
tf.scalar(Math.log(2))
.sub(pi)
.sub(tf.softplus(
tf.scalar(-2).mul(pi)
))
)
logPi = logPi.sub(tf.sum(adj, 1, true))
mu = tf.tanh(mu)
pi = tf.tanh(pi)
return { pi, mu, logPi }
}
/**
* Builds actor network model.
*
* @param {string} [name = 'actor'] - name of the model
* @param {string} trainable - whether a critic is trainable
* @returns {tf.LayersModel} model
*/
async _getActor(name = 'actor', trainable = true) {
const checkpoint = await this._loadCheckpoint(name)
if (checkpoint) return checkpoint
let outputs = this._telemetryInput
// outputs = tf.layers.dense({units: 128, activation: 'relu'}).apply(outputs)
if (this._sighted) {
let convOutputL = this._getConvEncoder(this._frameInputL)
let convOutputR = this._getConvEncoder(this._frameInputR)
// let convOutput = tf.layers.concatenate().apply([convOutputL, convOutputR])
// convOutput = tf.layers.dense({units: 10, activation: 'relu'}).apply(convOutput)
outputs = tf.layers.concatenate().apply([convOutputL, convOutputR, outputs])
}
outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
const mu = tf.layers.dense({units: this._nActions}).apply(outputs)
const logStd = tf.layers.dense({units: this._nActions}).apply(outputs)
const model = tf.model({inputs: this._sighted ? [this._telemetryInput, this._frameInputL, this._frameInputR] : [this._telemetryInput], outputs: [mu, logStd], name})
model.trainable = trainable
if (this._verbose) {
console.log('==========================')
console.log('==========================')
console.log('Actor ' + name + ': ')
model.summary()
}
return model
}
/**
* Builds a critic network model.
*
* @param {string} [name = 'critic'] - name of the model
* @param {string} trainable - whether a critic is trainable
* @returns {tf.LayersModel} model
*/
async _getCritic(name = 'critic', trainable = true) {
const checkpoint = await this._loadCheckpoint(name)
if (checkpoint) return checkpoint
let outputs = tf.layers.concatenate().apply([this._telemetryInput, this._actionInput])
// outputs = tf.layers.dense({units: 128, activation: 'relu'}).apply(outputs)
if (this._sighted) {
let convOutputL = this._getConvEncoder(this._frameInputL)
let convOutputR = this._getConvEncoder(this._frameInputR)
// let convOutput = tf.layers.concatenate().apply([convOutputL, convOutputR])
// convOutput = tf.layers.dense({units: 10, activation: 'relu'}).apply(convOutput)
outputs = tf.layers.concatenate().apply([convOutputL, convOutputR, outputs])
}
outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
outputs = tf.layers.dense({units: 256, activation: 'relu'}).apply(outputs)
outputs = tf.layers.dense({units: 1}).apply(outputs)
const model = tf.model({
inputs: this._sighted
? [this._telemetryInput, this._frameInputL, this._frameInputR, this._actionInput]
: [this._telemetryInput, this._actionInput],
outputs, name
})
model.trainable = trainable
if (this._verbose) {
console.log('==========================')
console.log('==========================')
console.log('CRITIC ' + name + ': ')
model.summary()
}
return model
}
// _encoder = null
// _getConvEncoder(inputs) {
// if (!this._encoder)
// this._encoder = this.__getConvEncoder(inputs)
// return this._encoder
// }
/**
* Builds convolutional part of a network.
*
* @param {Tensor} inputs - input for the conv layers
* @returns outputs
*/
_getConvEncoder(inputs) {
const kernelSize = 3
const padding = 'valid'
const poolSize = 3
const strides = 1
// const depthwiseInitializer = 'heNormal'
// const pointwiseInitializer = 'heNormal'
const kernelInitializer = 'glorotNormal'
const biasInitializer = 'glorotNormal'
let outputs = inputs
// 32x8x4 -> 64x4x2 -> 64x3x1 -> 64x4x1
outputs = tf.layers.conv2d({
filters: 16,
kernelSize: 5,
strides: 2,
padding,
kernelInitializer,
biasInitializer,
activation: 'relu',
trainable: true
}).apply(outputs)
outputs = tf.layers.maxPooling2d({poolSize:2}).apply(outputs)
//
// outputs = tf.layers.layerNormalization().apply(outputs)
outputs = tf.layers.conv2d({
filters: 16,
kernelSize: 3,
strides: 1,
padding,
kernelInitializer,
biasInitializer,
activation: 'relu',
trainable: true
}).apply(outputs)
outputs = tf.layers.maxPooling2d({poolSize:2}).apply(outputs)
// outputs = tf.layers.layerNormalization().apply(outputs)
// outputs = tf.layers.conv2d({
// filters: 12,
// kernelSize: 3,
// strides: 1,
// padding,
// kernelInitializer,
// biasInitializer,
// activation: 'relu',
// trainable: true
// }).apply(outputs)
// outputs = tf.layers.conv2d({
// filters: 10,
// kernelSize: 2,
// strides: 1,
// padding,
// kernelInitializer,
// biasInitializer,
// activation: 'relu',
// trainable: true
// }).apply(outputs)
// outputs = tf.layers.conv2d({
// filters: 64,
// kernelSize: 4,
// strides: 1,
// padding,
// kernelInitializer,
// biasInitializer,
// activation: 'relu'
// }).apply(outputs)
// outputs = tf.layers.batchNormalization().apply(outputs)
// outputs = tf.layers.layerNormalization().apply(outputs)
outputs = tf.layers.flatten().apply(outputs)
// convOutputs = tf.layers.dense({units: 96, activation: 'relu'}).apply(convOutputs)
return outputs
}
/**
* Returns clipped alpha.
*
* @returns {Tensor} entropy
*/
_getAlpha() {
// return tf.maximum(tf.exp(this._logAlpha), tf.scalar(this._minAlpha))
return tf.exp(this._logAlpha)
}
/**
* Builds a log of entropy scale (α) for training.
*
* @param {string} name
* @returns {tf.Variable} trainable variable for log entropy
*/
async _getLogAlpha(name = 'alpha') {
let logAlpha = 0.0
const checkpoint = await this._loadCheckpoint(name)
if (checkpoint) {
logAlpha = checkpoint.getWeights()[0].arraySync()[0][0]
if (this._verbose)
console.log('Checkpoint alpha: ', logAlpha)
this._logAlphaPlaceholder = checkpoint
} else {
const model = tf.sequential({ name });
model.add(tf.layers.dense({ units: 1, inputShape: [1], useBias: false }))
model.setWeights([tf.tensor([logAlpha], [1, 1])])
this._logAlphaPlaceholder = model
}
return tf.variable(tf.scalar(logAlpha), true) // true -> trainable
}
/**
* Saves all agent's models to the storage.
*/
async checkpoint() {
if (!this._trainable) throw new Error('(╭ರ_ ⊙ )')
this._logAlphaPlaceholder.setWeights([tf.tensor([this._logAlpha.arraySync()], [1, 1])])
await Promise.all([
this._saveCheckpoint(this.actor),
this._saveCheckpoint(this.q1),
this._saveCheckpoint(this.q2),
this._saveCheckpoint(this.q1Targ),
this._saveCheckpoint(this.q2Targ),
this._saveCheckpoint(this._logAlphaPlaceholder)
])
if (this._verbose)
console.log('Checkpoint succesfully saved')
}
/**
* Saves a model to the storage.
*
* @param {tf.LayersModel} model
*/
async _saveCheckpoint(model) {
const key = this._getChKey(model.name)
const saveResults = await model.save(key)
if (this._verbose)
console.log('Checkpoint saveResults', model.name, saveResults)
}
/**
* Loads saved checkpoint from the storage.
*
* @param {string} name model name
* @returns {tf.LayersModel} model
*/
async _loadCheckpoint(name) {
// return
if (this._forced) {
console.log('Forced to not load from the checkpoint ' + name)
return
}
const key = this._getChKey(name)
const modelsInfo = await tf.io.listModels()
if (key in modelsInfo) {
const model = await tf.loadLayersModel(key)
if (this._verbose)
console.log('Loaded checkpoint for ' + name)
return model
}
if (this._verbose)
console.log('Checkpoint not found for ' + name)
}
/**
* Builds the key for the model weights in LocalStorage.
*
* @param {tf.LayersModel} name model name
* @returns {string} key
*/
_getChKey(name) {
return 'indexeddb://' + name + '-' + VERSION
}
}
})()
/* TESTS */
;(async () => {
return
// https://www.wolframalpha.com/input/?i2d=true&i=y%5C%2840%29x%5C%2844%29+%CE%BC%5C%2844%29+%CF%83%5C%2841%29+%3D+ln%5C%2840%29Divide%5B1%2CSqrt%5B2*%CF%80*Power%5B%CF%83%2C2%5D%5D%5D*Exp%5B-Divide%5B1%2C2%5D*%5C%2840%29Divide%5BPower%5B%5C%2840%29x-%CE%BC%5C%2841%29%2C2%5D%2CPower%5B%CF%83%2C2%5D%5D%5C%2841%29%5D%5C%2841%29
;(() => {
const agent = new AgentSac()
const
mu = tf.tensor([0], [1, 1]), // mu = 0
logStd = tf.tensor([0], [1, 1]), // logStd = 0
std = tf.exp(logStd), // std = 1
normal = tf.tensor([0], [1, 1]), // N = 0
pi = mu.add(std.mul(normal)) // x = 0
const log = agent._gaussianLikelihood(pi, mu, logStd)
console.assert(log.arraySync()[0][0].toFixed(5) === '-0.91894',
'test Gaussian Likelihood for μ=0, σ=1, x=0')
})()
;(() => {
const agent = new AgentSac()
const
mu = tf.tensor([1], [1, 1]), // mu = 1
logStd = tf.tensor([1], [1, 1]), // logStd = 1
std = tf.exp(logStd), // std = e
normal = tf.tensor([0], [1, 1]), // N = 0
pi = mu.add(std.mul(normal)) // x = 1
const log = agent._gaussianLikelihood(pi, mu, logStd)
console.assert(log.arraySync()[0][0].toFixed(5) === '-1.91894',
'test Gaussian Likelihood for μ=1, σ=e, x=0')
})()
;(() => {
const agent = new AgentSac()
const
mu = tf.tensor([1], [1, 1]), // mu = -1
logStd = tf.tensor([1], [1, 1]), // logStd = 1
std = tf.exp(logStd), // std = e
normal = tf.tensor([0.1], [1, 1]), // N = 0
pi = mu.add(std.mul(normal)) // x = -1.27182818
const logPi = agent._gaussianLikelihood(pi, mu, logStd)
const { pi: piSquashed, logPi: logPiSquashed } = agent._applySquashing(pi, mu, logPi)
const logProbBounded = logPi.sub(
tf.log(
tf.scalar(1)
.sub(tf.tanh(pi).pow(tf.scalar(2)))
// .add(EPSILON)
)
).sum(1, true)
console.assert(logPi.arraySync()[0][0].toFixed(5) === '-1.92394',
'test Gaussian Likelihood for μ=-1, σ=e, x=-1.27182818')
console.assert(logPiSquashed.arraySync()[0][0].toFixed(5) === logProbBounded.arraySync()[0][0].toFixed(5),
'test logPiSquashed for μ=-1, σ=e, x=-1.27182818')
console.assert(piSquashed.arraySync()[0][0].toFixed(5) === tf.tanh(pi).arraySync()[0][0].toFixed(5),
'test piSquashed for μ=-1, σ=e, x=-1.27182818')
})()
await (async () => {
const state = tf.tensor([
0.5, 0.3, -0.9,
0, -0.8, 1,
-0.3, 0.04, 0.02,
0.9
], [1, 10])
const action = tf.tensor([
0.1, -1, -0.4,
1, -0.8, -0.8, -0.2,
0.04, 0.02, 0.001
], [1, 10])
const fresh = new AgentSac({ prefix: 'test', forced: true })
await fresh.init()
await fresh.checkpoint()
const saved = new AgentSac({ prefix: 'test' })
await saved.init()
let frPred, saPred
frPred = fresh.actor.predict(state, {batchSize: 1})
saPred = saved.actor.predict(state, {batchSize: 1})
console.assert(
frPred[0].arraySync().length > 0 &&
frPred[1].arraySync().length > 0 &&
frPred[0].arraySync().join(';') === saPred[0].arraySync().join(';') &&
frPred[1].arraySync().join(';') === saPred[1].arraySync().join(';'),
'Models loaded from the checkpoint should be the same')
frPred = fresh.q1.predict([state, action], {batchSize: 1})
saPred = fresh.q1Targ.predict([state, action], {batchSize: 1})
console.assert(
frPred.arraySync()[0][0] !== undefined &&
frPred.arraySync()[0][0] === saPred.arraySync()[0][0],
'Q1 and Q1-target should be the same')
frPred = fresh.q2.predict([state, action], {batchSize: 1})
saPred = saved.q2.predict([state, action], {batchSize: 1})
console.assert(
frPred.arraySync()[0][0] !== undefined &&
frPred.arraySync()[0][0] === saPred.arraySync()[0][0],
'Q and Q restored should be the same')
console.assert(
fresh._logAlpha.arraySync() !== undefined &&
fresh._logAlpha.arraySync() === fresh._logAlpha.arraySync(),
'Q and Q restored should be the same')
})()
})()
|