File size: 26,522 Bytes
2be7027
 
 
 
 
 
 
5b4883b
2be7027
 
 
 
ca1ec44
859e47a
2be7027
 
4e3506b
2be7027
 
 
5b4883b
 
 
 
de1e889
 
2be7027
 
de1e889
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3506b
 
 
 
ef77fe1
 
 
 
2be7027
 
 
 
 
 
 
 
de1e889
 
 
 
2be7027
 
 
 
12ebd07
 
 
 
2be7027
 
 
 
 
 
 
 
5b4883b
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1e889
 
 
 
2be7027
 
 
 
 
22fbfd8
 
 
 
 
2be7027
 
 
 
 
 
 
 
22fbfd8
2be7027
22fbfd8
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef77fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be7027
4e3506b
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1e889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ebd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1e889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef77fe1
 
 
 
 
 
 
 
 
 
 
 
4e3506b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ebd07
 
 
 
 
 
 
 
 
 
 
 
2be7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1e889
 
 
 
 
 
 
2be7027
5b4883b
 
 
 
 
 
 
 
 
 
d5bf3db
cafedbd
 
6189b61
e1dc908
d797f64
 
f7cb4e5
2be7027
 
e3d0541
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
import chainlit as cl
from gradio_client import Client
from openai import OpenAI
from groq import Groq
import requests
from chainlit.input_widget import Select, Slider
import os
import cohere 

hf_token = os.environ.get("HF_TOKEN")
openai_api_key = os.environ.get('OPENAI_API_KEY')
groq_api_key = os.environ.get('GROQ_API_KEY')
cohere_api_key = os.environ.get('COHERE_API_KEY')
print(cohere_api_key)

hf_text_client = Client("Artin2009/text-generation", hf_token=hf_token)
# hf_image_client = Client('Artin2009/image-generation')
openai_client = OpenAI(api_key=openai_api_key)
groq_client = Groq(api_key=groq_api_key)

co = cohere.Client(
  api_key=cohere_api_key, # This is your trial API key
) 

# API_URL = "https://api-inference.huggingface.co/models/PartAI/TookaBERT-Large"
# headers = {"Authorization": f"Bearer {hf_token}"}


# def query(payload):
# 	response = requests.post(API_URL, headers=headers, json=payload)
# 	return response.json()

@cl.set_chat_profiles
async def chat_profile():
    return [
        cl.ChatProfile(
            name="None",
            markdown_description="None",
        ),
        cl.ChatProfile(
            name="neural-brain-AI",
            markdown_description="The main model of neural brain",
        ),
        cl.ChatProfile(
            name="Dorna-AI",
            markdown_description="One of the open-sourced models that neural brain team fine-tuned",
        ),
        # cl.ChatProfile(
        #     name='Image-Generation',
        #     markdown_description='Our image generation model, has a performance like midjourney',
        # ),
        cl.ChatProfile(
            name="gpt4-o-mini",
            markdown_description="The best state of the art openai model",
        ),
        cl.ChatProfile(
            name="GPT-4",
            markdown_description="OpenAI's GPT-4 model",
        ),
        cl.ChatProfile(
            name="gpt-3.5-turbo",
            markdown_description="OpenAI's GPT-3.5 Turbo model",
        ),
        # cl.ChatProfile(
        #     name="GPT-3.5-turbo-0125",
        #     markdown_description="OpenAI's GPT-3.5 Turbo 0125 model",
        # ),
        cl.ChatProfile(
            name="gpt-3.5-turbo-1106",
            markdown_description="OpenAI's GPT-3.5 Turbo 1106 model",
        ),
        # cl.ChatProfile(
        #     name="davinci-002",
        #     markdown_description="OpenAI's Davinci-002 model",
        # ),
        cl.ChatProfile(
            name="TTS",
            markdown_description="OpenAI's Text-to-Speech model",
        ),
        cl.ChatProfile(
            name="Llama-3-70B",
            markdown_description="Meta Open Source model Llama-2 with 70B parameters",
        ),
        cl.ChatProfile(
            name='Aya-23B',
            markdown_description='Cohere open sourced AI model with 23B parameters'
        ),
        cl.ChatProfile(
            name="Llama-3-8B",
            markdown_description="Meta Open Source model Llama-2 with 7B parameters",
        ),
        cl.ChatProfile(
            name = "gemma-7B",
            markdown_description = 'Google Open Source LLM'
        ),
        cl.ChatProfile(
            name="zephyr-7B",
            markdown_description="Open Source model Zephyr with 7B parameters",
        ),
        cl.ChatProfile(
            name='mistral-7B',
            markdown_description = 'mistral open source LLM with 7B parameters'
        ),
        # cl.ChatProfile(
        #     name="Toka-353M",
        #     markdown_description="PartAI Open Source model Toka with 353M parameters",
        # )
    ]

@cl.on_chat_start
async def on_chat_start():
    chat_profile = cl.user_session.get("chat_profile")
    if not chat_profile:
        await cl.Message(
            content='please choose a model to start'
        ).send()
    
    if chat_profile == 'neural-brain-AI':
        await cl.ChatSettings(
            [
            Select(
                id="NB-Model",
                label="NeuralBrain - Models",
                values=["Neural Brain AI"],
                initial_index=0,
                )
            ]
        ).send()
        await cl.Message(
            content="Hello, I am the main model of neural brain team, i am an instance of ChatGPT-4, This team finetuned me and i am ready to help you"
        ).send()

    if chat_profile == 'Dorna-AI':
        await cl.ChatSettings(
            [
             Select(
                    id="param_3",
                    label="Parameter 3",
                    values=["512"],  # Only one selectable value
                    initial_index=0,
                    tooltip="Config parameter 3 (e.g., max tokens)",
                ),
                Select(
                    id="param_4",
                    label="Parameter 4",
                    values=["0.7"],  # Only one selectable value
                    initial_index=0,
                    tooltip="Config parameter 4 (e.g., temperature)",
                ),
                Select(
                    id="param_5",
                    label="Parameter 5",
                    values=["0.95"],  # Only one selectable value
                    initial_index=0,
                    tooltip="Config parameter 5 (e.g., top_p)",
                ),
                Select(
                    id="api_name",
                    label="API Name",
                    values=["/chat"],
                    initial_index=0,
                ),
            ]
        ).send()

        await cl.Message(
            content='my name is Dorna, Your AI Assistant designed by neural nexus team. i was made by Artin Daneshvar and Sadra Noadoust, 2 iranian students!'
        ).send()
    if chat_profile == 'gpt4-o-mini':
        await cl.ChatSettings(
            [
                Select(
                    id="OpenAI-Model",
                    label="OpenAI - Model",
                    values=["gpt-4"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im one of the best models openai have released and i am configured by two iranian boys to help you."
        )

    # if chat_profile == 'Image-Generation':
    #     image = cl.Image(path='cat.png', name="result", display="inline")
    #     await cl.Message(
    #         content="I can make high quality & resoloution images for you, This is an example of what i can do!",
    #         elements=[image],
    #         ).send()
    if chat_profile == 'GPT-4':
        await cl.ChatSettings(
            [
                Select(
                    id="OpenAI-Model",
                    label="OpenAI - Model",
                    values=["gpt-4"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im OpenAI's latest and biggest model.  i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()

    if chat_profile == 'gpt-3.5-turbo':
        await cl.ChatSettings(
            [
                Select(
                    id="OpenAI-Model",
                    label="OpenAI - Model",
                    values=["gpt-3.5-turbo"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im one of the OpenAI's models. one of the best models. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    # if chat_profile == 'GPT-3.5-turbo-0125':
    #     await cl.ChatSettings(
    #         [
    #             Select(
    #                 id="OpenAI-Model",
    #                 label="OpenAI - Model",
    #                 values=["gpt-3.5-turbo-0125"],
    #                 initial_index=0,
    #             ),
    #             Slider(
    #                 id="Temperature",
    #                 label="Model Temperature",
    #                 initial=0.7,
    #                 min=0,
    #                 max=1,
    #                 step=0.1,
    #             ),
    #         ]
    #     ).send()
        # await cl.Message(
        #     content="Im one of the OpenAI's models. one of the best models. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        # ).send()

    if chat_profile == 'gpt-3.5-turbo-1106':
        await cl.ChatSettings(
            [
                Select(
                    id="OpenAI-Model",
                    label="OpenAI - Model",
                    values=["gpt-3.5-turbo-1106"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im one of the OpenAI's models. one of the best models. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()

    # if chat_profile == 'davinci-002':
    #     await cl.ChatSettings(
    #         [
    #             Select(
    #                 id="OpenAI-Model",
    #                 label="OpenAI - Model",
    #                 values=["davinci-002"],
    #                 initial_index=0,
    #             ),
    #             Slider(
    #                 id="Temperature",
    #                 label="Model Temperature",
    #                 initial=0.7,
    #                 min=0,
    #                 max=1,
    #                 step=0.1,
    #             ),
    #         ]
    #     ).send()
    #     await cl.Message(
    #         content="Im one of the OpenAI's models. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
    #     ).send()
    if chat_profile == 'TTS':
        await cl.Message(
            content="Im TTS. of the best models OpenAI ever created. i can convert text to speech! . i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    if chat_profile == 'Llama-3-70B':
        await cl.ChatSettings(
            [
                Select(
                    id="Meta-Model",
                    label="Meta - Model",
                    values=["Llama-3-70B"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im the big Llama!. one of the best open source models released by Meta! i am the Big version of meta's open source LLMs., i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    if chat_profile == 'Llama-3-8B':
        await cl.ChatSettings(
            [
                Select(
                    id="Meta-Model",
                    label="Meta - Model",
                    values=["Llama-3-8B"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()        
        await cl.Message(
            content="Im The small Llama!. one of the best open source models released by Meta! i am the small version of meta's open source LLMs. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    if chat_profile == 'gemma-7B':
        await cl.ChatSettings(
            [
                Select(
                    id="Google-Model",
                    label="Google - Model",
                    values=["Gemma-7B"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im Gemma. the small version of google open source LLMs. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    if chat_profile == 'zephyr-7B':
        await cl.ChatSettings(
            [
                Select(
                    id="zephyr-Model",
                    label="zephyr - Model",
                    values=["zephyr-7B"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im Zephyr. One of the best open source LLMs. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    if chat_profile == 'mistral-7B':
        await cl.ChatSettings(
            [
                Select(
                    id="Mistral-Model",
                    label="Mistral - Model",
                    values=["Mistral-7B"],
                    initial_index=0,
                ),
                Slider(
                    id="Temperature",
                    label="Model Temperature",
                    initial=0.7,
                    min=0,
                    max=1,
                    step=0.1,
                ),
            ]
        ).send()
        await cl.Message(
            content="Im Mistral. the small version of Mistral Family. i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? "
        ).send()
    # if chat_profile == 'Toka-353M':
    #     await cl.ChatSettings(
    #         [
    #             Select(
    #                 id="PartAI-Model",
    #                 label="PartAI - Model",
    #                 values=["TokaBert-353M"],
    #                 initial_index=0,
    #             ),
    #             Slider(
    #                 id="Temperature",
    #                 label="Model Temperature",
    #                 initial=0.7,
    #                 min=0,
    #                 max=1,
    #                 step=0.1,
    #             ),
    #         ]
    #     ).send()
    #     await cl.Message(
    #         content="Im Toka. An opens source  persian LLM . i was configured by Artin Daneshvar and Sadra Noadoust, 2 iranian students to help you, how can i assist you today ? you should ask me your questions like : the capital of england is <mask> "
    #     ).send()

@cl.on_message  
async def main(message: cl.Message):
    chat_profile = cl.user_session.get("chat_profile")
    if not chat_profile or chat_profile == 'None':
        await cl.Message(
            content="Please select a model first."
        ).send()
        return
    if chat_profile == 'neural-brain-AI':
        completion = openai_client.chat.completions.create(
            model="ft:gpt-3.5-turbo-1106:nb:aria1:9UWDrLJK",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()

    elif chat_profile == "Dorna-AI":
        result = hf_text_client.predict(
            message=message.content,
            request="your name is Dorna,An AI Assistant designed by neural nexus team. i was made by Artin Daneshvar and Sadra Noadoust, 2 iranian students!",
            param_3=512,
            param_4=0.7,
            param_5=0.95,
            api_name="/chat"
        )
        model_response = result.strip("</s>") 
        await cl.Message(
            content=model_response
        ).send()
    elif chat_profile == "gpt4-o-omni":
        completion = openai_client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()
  #   elif chat_profile == 'Image-Generation':
  #       result = hf_image_client.predict(
		# prompt=message.content,
		# negative_prompt="",
		# seed=0,
		# randomize_seed=True,
		# width=512,
		# height=512,
		# guidance_scale=0,
		# num_inference_steps=2,
		# api_name="/infer"
  #       )
  #       image = cl.Image(path=result, name="result", display="inline")
  #       await cl.Message(
  #           content="This message has an image!",
  #           elements=[image],
  #       ).send()
    elif chat_profile == 'GPT-4':
        completion = openai_client.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()

    elif chat_profile == 'gpt-3.5-turbo':
        completion = openai_client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()
    elif chat_profile == 'GPT-3.5-turbo-0125':
        completion = openai_client.chat.completions.create(
            model="GPT-3.5-turbo-0125",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()
    elif chat_profile == 'gpt-3.5-turbo-1106':
        completion = openai_client.chat.completions.create(
            model="gpt-3.5-turbo-1106",
            messages=[
                {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
                {"role": "user", "content": message.content}
            ]
        )
        model_response = completion.choices[0].message.content
        await cl.Message(
            content=model_response
        ).send()
    # elif chat_profile == 'davinci-002':
    #     completion = openai_client.chat.completions.create(
    #         model="davinci-002",
    #         messages=[
    #             {"role": "system", "content": "You are neural nexus official chatbot, you are made by Artin Daneshvar and Sadra Noadoust"},
    #             {"role": "user", "content": message.content}
    #         ]
    #     )
    #     model_response = completion.choices[0].message.content
    #     await cl.Message(
    #         content=model_response
    #     ).send()

    elif chat_profile == 'TTS':
        response = openai_client.audio.speech.create(
            model="tts-1",
            voice="alloy",
            input=message.content,
        )

        response.stream_to_file("output.mp3")

        elements = [
            cl.Audio(name="output.mp3", path="./output.mp3", display="inline"),
        ]
        await cl.Message(
            content="Here it is the response!",
            elements=elements,
        ).send()

    elif chat_profile == 'Llama-3-70B':
        completion = groq_client.chat.completions.create(
            model="llama3-70b-8192",
            messages=[
                {
                    "role": "user",
                    "content": message.content
                }
            ],
            temperature=1,
            max_tokens=1024,
            top_p=1,
            stream=True,
            stop=None,
        )

        complete_content = ""

        # Iterate over each chunk
        for chunk in completion:
            # Retrieve the content from the current chunk
            content = chunk.choices[0].delta.content
            
            # Check if the content is not None before concatenating it
            if content is not None:
                complete_content += content

        # Send the concatenated content as a message
        await cl.Message(content=complete_content).send()

    elif chat_profile == 'Llama-3-8B':
        completion = groq_client.chat.completions.create(
            model="llama3-8b-8192",
            messages=[
                {
                    "role": "user",
                    "content": message.content
                }
            ],
            temperature=1,
            max_tokens=1024,
            top_p=1,
            stream=True,
            stop=None,
        )

        complete_content = ""

        # Iterate over each chunk
        for chunk in completion:
            # Retrieve the content from the current chunk
            content = chunk.choices[0].delta.content
            
            # Check if the content is not None before concatenating it
            if content is not None:
                complete_content += content

        # Send the concatenated content as a message
        await cl.Message(content=complete_content).send()

    elif chat_profile == 'gemma-7B':
        completion = groq_client.chat.completions.create(
            model="gemma-7b-it",
            messages=[
                {
                    "role": "user",
                    "content": message.content
                }
            ],
            temperature=1,
            max_tokens=1024,
            top_p=1,
            stream=True,
            stop=None,
        )

        complete_content = ""

        # Iterate over each chunk
        for chunk in completion:
            # Retrieve the content from the current chunk
            content = chunk.choices[0].delta.content
            
            # Check if the content is not None before concatenating it
            if content is not None:
                complete_content += content

        # Send the concatenated content as a message
        await cl.Message(content=complete_content).send()

    elif chat_profile == "zephyr-7B":
        result = hf_text_client.predict(
            message=message.content,
            request="your name is zephyr,An AI Assistant designed by neural nexus team. i was made by Artin Daneshvar and Sadra Noadoust, 2 iranian students!",
            param_3=512,
            param_4=0.7,
            param_5=0.95,
            api_name="/chat"
        )
        model_response = result.strip("</s>") 
        await cl.Message(
            content=model_response
        ).send()

    elif chat_profile == 'mistral-7B':
        completion = groq_client.chat.completions.create(
            model="mixtral-8x7b-32768",
            messages=[
                {
                    "role": "user",
                    "content": message.content
                }
            ],
            temperature=1,
            max_tokens=1024,
            top_p=1,
            stream=True,
            stop=None,
        )

        complete_content = ""

        for chunk in completion:
            content = chunk.choices[0].delta.content
            
            if content is not None:
                complete_content += content

        await cl.Message(content=complete_content).send() 

    # elif chat_profile == 'Toka-353M':
    #     output = query({
    #     "inputs": message.content,
    # })
    #     await cl.Message(
    #         content=output[0]['sequence']
    #     ).send()

    elif chat_profile == 'Aya-23B':
        stream = co.chat_stream( 
        model='c4ai-aya-23',
        message=message.content,
        temperature=0.3,
        # chat_history=[{"role": "User", "message": "Hello"}, {"role": "Chatbot", "message": "Hello! How can I help you today?"}, {"role": "User", "message": "Hi"}, {"role": "User", "message": "hello"}],
        prompt_truncation='OFF',
        connectors=[],
        ) 

        complete_content = ''
        for event in stream:
            if event.event_type == 'text-generation':
                complete_content += event.text
        await cl.Message(content=complete_content).send()



@cl.on_settings_update
async def setup_agent(settings):
    print("on_settings_update", settings)