File size: 5,582 Bytes
e86aa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c84ef7
 
e86aa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import numpy as np
import librosa
import soundfile as sf
from TTS.api import TTS
import torch
import os
import tempfile

# Initialize TTS model
try:
    tts = TTS("tts_models/multilingual/multi-dataset/your_tts", progress_bar=False)
except Exception as e:
    print(f"Error initializing TTS model: {e}")
    tts = None

def load_audio(audio_path):
    try:
        audio, sr = librosa.load(audio_path, sr=None)
        return audio, sr
    except Exception as e:
        print(f"Error loading audio: {e}")
        return None, None

def save_audio(audio, sr, path):
    try:
        sf.write(path, audio, sr)
    except Exception as e:
        print(f"Error saving audio: {e}")

def pitch_shift(audio, sr, n_steps):
    try:
        return librosa.effects.pitch_shift(audio, sr=sr, n_steps=n_steps)
    except Exception as e:
        print(f"Error in pitch shifting: {e}")
        return audio

def change_voice(audio_path, pitch_shift_amount, formant_shift_amount):
    if tts is None:
        return None, None

    audio, sr = load_audio(audio_path)
    if audio is None or sr is None:
        return None, None
    
    pitched_audio = pitch_shift(audio, sr, pitch_shift_amount)
    
    try:
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
            save_audio(pitched_audio, sr, temp_file.name)
            converted_audio_path = tts.voice_conversion(
                source_wav=temp_file.name,
                target_wav="path/to/female_target_voice.wav",  # You need to provide a female target voice file
                output_wav=None
            )
        
        converted_audio, _ = load_audio(converted_audio_path)
        formant_shifted_audio = librosa.effects.pitch_shift(converted_audio, sr=sr, n_steps=formant_shift_amount)
        
        os.unlink(temp_file.name)
        os.unlink(converted_audio_path)
        
        return sr, formant_shifted_audio
    except Exception as e:
        print(f"Error in voice conversion: {e}")
        return None, None

def process_audio(audio_file, pitch_shift_amount, formant_shift_amount):
    if audio_file is None:
        return None
    
    # Use the audio_file path directly
    sr, audio = change_voice(audio_file, pitch_shift_amount, formant_shift_amount)
    if sr is None or audio is None:
        return None
    
    output_path = "output_voice.wav"
    save_audio(audio, sr, output_path)
    
    return output_path

# Custom CSS for improved design
custom_css = """
.gradio-container {
    background-color: #f0f4f8;
}
.container {
    max-width: 900px;
    margin: auto;
    padding: 20px;
    border-radius: 10px;
    background-color: white;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
h1 {
    color: #2c3e50;
    text-align: center;
    font-size: 2.5em;
    margin-bottom: 20px;
}
.description {
    text-align: center;
    color: #34495e;
    margin-bottom: 30px;
}
.input-section, .output-section {
    background-color: #ecf0f1;
    padding: 20px;
    border-radius: 8px;
    margin-bottom: 20px;
}
.input-section h3, .output-section h3 {
    color: #2980b9;
    margin-bottom: 15px;
}
"""

# Gradio Interface with improved design
with gr.Blocks(css=custom_css) as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 800px; margin: 0 auto;">
            <div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;">
                <svg xmlns="http://www.w3.org/2000/svg" width="1em" height="1em" fill="currentColor" viewBox="0 0 16 16" style="vertical-align: middle;">
                    <path d="M3.5 6.5A.5.5 0 0 1 4 7v1a4 4 0 0 0 8 0V7a.5.5 0 0 1 1 0v1a5 5 0 0 1-4.5 4.975V15h3a.5.5 0 0 1 0 1h-7a.5.5 0 0 1 0-1h3v-2.025A5 5 0 0 1 3 8V7a.5.5 0 0 1 .5-.5z"/>
                    <path d="M10 8a2 2 0 1 1-4 0V3a2 2 0 1 1 4 0v5zM8 0a3 3 0 0 0-3 3v5a3 3 0 0 0 6 0V3a3 3 0 0 0-3-3z"/>
                </svg>
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                    AI Voice Changer
                </h1>
            </div>
            <p class="description">Transform any voice into a realistic female voice using advanced AI technology</p>
        </div>
        """
    )
    
    with gr.Row():
        with gr.Column(elem_classes="input-section"):
            gr.Markdown("### Input")
            audio_input = gr.Audio(type="filepath", label="Upload Voice")
            pitch_shift = gr.Slider(-12, 12, step=0.5, label="Pitch Shift", value=0)
            formant_shift = gr.Slider(-5, 5, step=0.1, label="Formant Shift", value=0)
            submit_btn = gr.Button("Transform Voice", variant="primary")

        with gr.Column(elem_classes="output-section"):
            gr.Markdown("### Output")
            audio_output = gr.Audio(label="Transformed Voice")

    submit_btn.click(
        fn=process_audio,
        inputs=[audio_input, pitch_shift, formant_shift],
        outputs=audio_output,
    )

    gr.Markdown(
        """
        ### How to use:
        1. Upload an audio file containing the voice you want to transform.
        2. Adjust the Pitch Shift and Formant Shift sliders to fine-tune the voice (optional).
        3. Click the "Transform Voice" button to process the audio.
        4. Listen to the transformed voice in the output section.
        5. Download the transformed audio file if desired.

        Note: This application uses AI to transform voices. The quality of the output may vary depending on the input audio quality and the chosen settings.
        """
    )

if __name__ == "__main__":
    demo.launch()