File size: 5,847 Bytes
ba2bdfe
 
 
6138a65
 
ba2bdfe
 
6138a65
ba2bdfe
6138a65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba2bdfe
 
 
83e4b5e
 
 
ba2bdfe
6138a65
 
 
 
 
 
 
 
 
 
ba2bdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Layer, Dense, Dropout, LayerNormalization, MultiHeadAttention
from tensorflow.keras.models import Sequential
from sklearn.preprocessing import LabelEncoder
import gradio as gr
import os

# Define the EnhancedTransformerBlock class
class EnhancedTransformerBlock(Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
        super(EnhancedTransformerBlock, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.ff_dim = ff_dim
        self.rate = rate
        
        self.att = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
        self.ffn = Sequential([
            Dense(ff_dim, activation="relu"),
            Dense(embed_dim),
        ])
        self.layernorm1 = LayerNormalization(epsilon=1e-6)
        self.layernorm2 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(rate)
        self.dropout2 = Dropout(rate)
        self.self_attention = MultiHeadAttention(num_heads=1, key_dim=embed_dim)

    def call(self, inputs, training=False):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        out2 = self.layernorm2(out1 + ffn_output)
        self_attn_output = self.self_attention(out2, out2)
        return self.layernorm2(out2 + self_attn_output)

    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "num_heads": self.num_heads,
            "ff_dim": self.ff_dim,
            "rate": self.rate,
        })
        return config

# Initialize global variables
sequence_length = 10
data = ["Single big", "Double big", "Double big", "Single small", "Single big",
                "Double small", "Single big", "Double small", "Single small", "Single small",
                "Single big", "Single small", "triple", "single big", "double small", "double small", "double small", "double small"]  # This will store the recent outcomes
encoder = LabelEncoder()

# Try to load the saved model and encoder classes
try:
    model = tf.keras.models.load_model("enhanced_adaptive_model.keras", custom_objects={'EnhancedTransformerBlock': EnhancedTransformerBlock})
    encoder.classes_ = np.load('label_encoder_classes.npy', allow_pickle=True)
except FileNotFoundError:
    print("Model or encoder classes file not found. Using a dummy model and encoder for demonstration.")
    # Create a dummy model and encoder for demonstration
    model = tf.keras.Sequential([tf.keras.layers.Dense(10, input_shape=(sequence_length,), activation='softmax')])
    encoder.classes_ = np.array(['Single small', 'Single big', 'Double small', 'Double big', 'Triple'])

def update_data(data, new_outcome):
    data.append(new_outcome)
    if len(data) > sequence_length:
        data.pop(0)
    return data

def enhanced_predict_next(model, data, sequence_length, encoder):
    last_sequence = data[-sequence_length:]
    last_sequence = np.array(encoder.transform(last_sequence)).reshape((1, sequence_length))
    
    # Monte Carlo Dropout for uncertainty estimation
    predictions = []
    for _ in range(100):
        prediction = model(last_sequence, training=True)
        predictions.append(prediction)
    
    mean_prediction = np.mean(predictions, axis=0)
    std_prediction = np.std(predictions, axis=0)
    
    predicted_label = encoder.inverse_transform([np.argmax(mean_prediction)])
    uncertainty = np.mean(std_prediction)
    
    return predicted_label[0], uncertainty

def gradio_predict(outcome):
    global data

    if outcome not in encoder.classes_:
        return "Invalid outcome. Please try again."

    data = update_data(data, outcome)

    if len(data) < sequence_length:
        return f"Not enough data to make a prediction. Please enter {sequence_length - len(data)} more outcomes."

    predicted_next, uncertainty = enhanced_predict_next(model, data, sequence_length, encoder)
    return f'Predicted next outcome: {predicted_next} (Uncertainty: {uncertainty:.4f})'

def gradio_update(actual_next):
    global data, model

    if actual_next not in encoder.classes_:
        return "Invalid outcome. Please try again."

    data = update_data(data, actual_next)

    if len(data) < sequence_length:
        return f"Not enough data to update the model. Please enter {sequence_length - len(data)} more outcomes."

    encoded_actual_next = encoder.transform([actual_next])[0]
    new_X = np.array(encoder.transform(data[-sequence_length:])).reshape((1, sequence_length))
    new_y = to_categorical(encoded_actual_next, num_classes=len(encoder.classes_))

    model.fit(new_X, new_y, epochs=1, verbose=0)
    return "Model updated with new data."

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Enhanced Outcome Prediction Model")
    gr.Markdown(f"Enter a sequence of {sequence_length} outcomes to get started.")
    gr.Markdown(f"Valid outcomes: {', '.join(encoder.classes_)}")
    
    with gr.Row():
        outcome_input = gr.Textbox(label="Enter an outcome")
        predict_button = gr.Button("Predict Next")
        predicted_output = gr.Textbox(label="Prediction")
    
    with gr.Row():
        actual_input = gr.Textbox(label="Enter actual next outcome")
        update_button = gr.Button("Update Model")
        update_output = gr.Textbox(label="Update Status")

    predict_button.click(gradio_predict, inputs=outcome_input, outputs=predicted_output)
    update_button.click(gradio_update, inputs=actual_input, outputs=update_output)

demo.launch()