Spaces:
Sleeping
Sleeping
File size: 1,709 Bytes
9f8b574 c41c45a ab3d718 c41c45a ec8cf8a 9ac8791 9f8b574 c41c45a c15417b ec8cf8a 0357904 77ab936 ec8cf8a 0357904 9ac8791 ec8cf8a 0357904 9ac8791 0357904 ec8cf8a 7b95784 ec8cf8a c41c45a 9ac8791 ec8cf8a 9ac8791 c15417b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
# Load a model suited for code generation
model_name = "Salesforce/codegen-350M-mono" # Choose a suitable model for your needs
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set a padding token if it doesn't exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def generate_code(prompt):
# Refined prompt
full_prompt = f"Please generate a basic HTML template for a personal blog, including a header, main content area for posts, and a footer. The output should be only the HTML code."
# Tokenize the input
input_tensor = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(device)
# Generate code with attention mask
with torch.no_grad():
generated_ids = model.generate(
input_tensor['input_ids'],
attention_mask=input_tensor['attention_mask'],
max_length=500, # Increase if necessary to capture full HTML
num_beams=5,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id
)
# Decode and return the generated code
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_code
# Set up the Gradio interface
iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
# Launch the app
iface.launch(server_name="0.0.0.0", server_port=7860) |