File size: 19,764 Bytes
9f76503 ee9934e 25fcabc b77f1d0 ee9934e 04ce9af 9f76503 f3e17f7 25fcabc 86277c0 4467900 ee9934e f3e17f7 5003662 86277c0 ee9934e f3e17f7 54625d7 9f76503 1f79774 9f76503 25fcabc 9f76503 7d208a6 9f76503 7d208a6 5003662 9f76503 7d208a6 9f76503 25fcabc 04ce9af 25fcabc 04ce9af 25fcabc 04ce9af 25fcabc 4467900 25fcabc 04ce9af b77f1d0 25fcabc 86277c0 25fcabc 86277c0 25fcabc 86277c0 25fcabc 04ce9af b77f1d0 25fcabc a8529ac 25fcabc 04ce9af 25fcabc 04ce9af 25fcabc 4467900 b77f1d0 04ce9af b77f1d0 86277c0 b77f1d0 04ce9af 86277c0 04ce9af b77f1d0 1f79774 f3e17f7 a8529ac 25fcabc f3e17f7 9f76503 5003662 16d7871 70fea2e 16d7871 9f76503 70fea2e c002b34 70fea2e c002b34 70fea2e 9f76503 a8529ac 04ce9af 1f79774 25fcabc a8529ac 1f79774 25fcabc 1f79774 a8529ac 1f79774 4467900 1f79774 a8529ac 1f79774 a8529ac 25fcabc a8529ac 25fcabc a8529ac 7d208a6 a8529ac 25fcabc 0596e00 25fcabc b77f1d0 25fcabc b77f1d0 25fcabc b77f1d0 25fcabc 4467900 25fcabc 4467900 25fcabc b77f1d0 25fcabc b77f1d0 25fcabc b77f1d0 25fcabc 1f79774 25fcabc 1f79774 25fcabc 04ce9af 25fcabc ee9934e 25fcabc 04ce9af 25fcabc a8529ac 25fcabc b77f1d0 4467900 04ce9af 25fcabc 04ce9af 25fcabc b77f1d0 04ce9af b77f1d0 04ce9af b77f1d0 25fcabc 04ce9af 25fcabc 04ce9af b77f1d0 25fcabc 4467900 25fcabc 1f79774 b77f1d0 4467900 b77f1d0 25fcabc 04ce9af 25fcabc 04ce9af b77f1d0 25fcabc 4467900 25fcabc 4467900 25fcabc ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 25fcabc b77f1d0 25fcabc ff28cb9 70fea2e ff28cb9 70fea2e 25fcabc ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 a8529ac ff28cb9 ee9934e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import json
import logging
import os.path
import tempfile
from functools import partial
from typing import List, Optional, Tuple
import gradio as gr
import pandas as pd
from document_store import DocumentStore, get_annotation_from_document
from model_utils import create_and_annotate_document, load_models
from pie_modules.taskmodules import PointerNetworkTaskModuleForEnd2EndRE
from pytorch_ie import Pipeline
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from rendering_utils import render_displacy, render_pretty_table
from transformers import PreTrainedModel, PreTrainedTokenizer
logger = logging.getLogger(__name__)
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"
DEFAULT_MODEL_NAME = "ArneBinder/sam-pointer-bart-base-v0.3"
DEFAULT_MODEL_REVISION = "76300f8e534e2fcf695f00cb49bba166739b8d8a"
# local path
# DEFAULT_MODEL_NAME = "models/dataset-sciarg/task-ner_re/v0.3/2024-05-28_23-33-46"
# DEFAULT_MODEL_REVISION = None
DEFAULT_EMBEDDING_MODEL_NAME = "allenai/scibert_scivocab_uncased"
def render_annotated_document(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
render_with: str,
render_kwargs_json: str,
) -> str:
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(document, **render_kwargs)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(document, **render_kwargs)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
def wrapped_process_text(
text: str,
doc_id: str,
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
document_store: DocumentStore,
) -> Tuple[dict, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions]:
document = create_and_annotate_document(
text=text,
doc_id=doc_id,
models=models,
)
document_store.add_document(document)
# Return as dict and document to avoid serialization issues
return document.asdict(), document
def process_uploaded_files(
file_names: List[str],
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
document_store: DocumentStore,
) -> pd.DataFrame:
try:
new_documents = []
for file_name in file_names:
if file_name.lower().endswith(".txt"):
# read the file content
with open(file_name, "r", encoding="utf-8") as f:
text = f.read()
base_file_name = os.path.basename(file_name)
gr.Info(f"Processing file '{base_file_name}' ...")
new_documents.append(create_and_annotate_document(text, base_file_name, models))
else:
raise gr.Error(f"Unsupported file format: {file_name}")
document_store.add_documents(new_documents)
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
return document_store.overview()
def open_accordion():
return gr.Accordion(open=True)
def close_accordion():
return gr.Accordion(open=False)
def select_processed_document(
evt: gr.SelectData,
processed_documents_df: pd.DataFrame,
document_store: DocumentStore,
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
row_idx, col_idx = evt.index
doc_id = processed_documents_df.iloc[row_idx]["doc_id"]
doc = document_store.get_document(doc_id)
return doc
def set_relation_types(
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
default: Optional[List[str]] = None,
) -> gr.Dropdown:
arg_pipeline = models[0]
if isinstance(arg_pipeline.taskmodule, PointerNetworkTaskModuleForEnd2EndRE):
relation_types = arg_pipeline.taskmodule.labels_per_layer["binary_relations"]
else:
raise gr.Error("Unsupported taskmodule for relation types")
return gr.Dropdown(
choices=relation_types,
label="Relation Types",
value=default,
multiselect=True,
)
def download_processed_documents(
document_store: DocumentStore,
file_name: str = "processed_documents.json",
) -> str:
file_path = os.path.join(tempfile.gettempdir(), file_name)
document_store.save_to_json(file_path, indent=2)
return file_path
def upload_processed_documents(
file_name: str,
document_store: DocumentStore,
) -> pd.DataFrame:
document_store.add_from_json(file_name)
return document_store.overview()
def main():
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."
print("Loading models ...")
argumentation_model, embedding_model, embedding_tokenizer = load_models(
model_name=DEFAULT_MODEL_NAME,
revision=DEFAULT_MODEL_REVISION,
embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
)
default_render_kwargs = {
"entity_options": {
# we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
"colors": {
"own_claim".upper(): "#009933",
"background_claim".upper(): "#99ccff",
"data".upper(): "#993399",
}
},
"colors_hover": {
"selected": "#ffa",
# "tail": "#aff",
"tail": {
# green
"supports": "#9f9",
# red
"contradicts": "#f99",
# do not highlight
"parts_of_same": None,
},
"head": None, # "#faf",
"other": None,
},
}
with gr.Blocks() as demo:
document_store_state = gr.State(DocumentStore())
# wrap the pipeline and the embedding model/tokenizer in a tuple to avoid that it gets called
models_state = gr.State((argumentation_model, embedding_model, embedding_tokenizer))
with gr.Row():
with gr.Column(scale=1):
doc_id = gr.Textbox(
label="Document ID",
value="user_input",
)
doc_text = gr.Textbox(
label="Text",
lines=20,
value=example_text,
)
with gr.Accordion("Model Configuration", open=False):
model_name = gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
)
model_revision = gr.Textbox(
label="Model Revision",
value=DEFAULT_MODEL_REVISION,
)
embedding_model_name = gr.Textbox(
label=f"Embedding Model Name (e.g. {DEFAULT_EMBEDDING_MODEL_NAME})",
value=DEFAULT_EMBEDDING_MODEL_NAME,
)
load_models_btn = gr.Button("Load Models")
load_models_btn.click(
fn=load_models,
inputs=[model_name, model_revision, embedding_model_name],
outputs=models_state,
)
predict_btn = gr.Button("Analyse")
document_state = gr.State()
with gr.Column(scale=1):
with gr.Accordion("See plain result ...", open=False) as output_accordion:
document_json = gr.JSON(label="Model Output")
with gr.Accordion("Render Options", open=False):
render_as = gr.Dropdown(
label="Render with",
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
value=RENDER_WITH_DISPLACY,
)
render_kwargs = gr.Textbox(
label="Render Arguments",
lines=5,
value=json.dumps(default_render_kwargs, indent=2),
)
render_btn = gr.Button("Re-render")
rendered_output = gr.HTML(label="Rendered Output")
# add_to_index_btn = gr.Button("Add current result to Index")
upload_btn = gr.UploadButton(
"Upload & Analyse Documents", file_types=["text"], file_count="multiple"
)
with gr.Column(scale=1):
with gr.Accordion(
"Indexed Documents", open=False
) as processed_documents_accordion:
processed_documents_df = gr.DataFrame(
headers=["id", "num_adus", "num_relations"],
interactive=False,
)
with gr.Row():
download_processed_documents_btn = gr.DownloadButton("Download")
upload_processed_documents_btn = gr.UploadButton(
"Upload", file_types=["json"]
)
with gr.Accordion("Selected ADU", open=False):
selected_adu_id = gr.Textbox(label="ID", elem_id="selected_adu_id")
selected_adu_text = gr.Textbox(label="Text")
with gr.Accordion("Retrieval Configuration", open=False):
min_similarity = gr.Slider(
label="Minimum Similarity",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
top_k = gr.Slider(
label="Top K",
minimum=2,
maximum=50,
step=1,
value=20,
)
retrieve_similar_adus_btn = gr.Button("Retrieve similar ADUs")
similar_adus = gr.DataFrame(headers=["doc_id", "adu_id", "score", "text"])
relation_types = set_relation_types(
models_state.value, default=["supports", "contradicts"]
)
# retrieve_relevant_adus_btn = gr.Button("Retrieve relevant ADUs")
relevant_adus = gr.DataFrame(
label="Relevant ADUs from other documents",
headers=[
"relation",
"adu",
"reference_adu",
"doc_id",
"sim_score",
"rel_score",
],
interactive=False,
)
render_event_kwargs = dict(
fn=render_annotated_document,
inputs=[document_state, render_as, render_kwargs],
outputs=rendered_output,
)
predict_btn.click(fn=open_accordion, inputs=[], outputs=[output_accordion]).then(
fn=wrapped_process_text,
inputs=[doc_text, doc_id, models_state, document_store_state],
outputs=[document_json, document_state],
api_name="predict",
).success(
fn=lambda document_store: document_store.overview(),
inputs=[document_store_state],
outputs=[processed_documents_df],
)
render_btn.click(**render_event_kwargs, api_name="render")
document_state.change(
fn=lambda doc: doc.asdict(),
inputs=[document_state],
outputs=[document_json],
).success(close_accordion, inputs=[], outputs=[output_accordion]).then(
**render_event_kwargs
)
upload_btn.upload(
fn=open_accordion, inputs=[], outputs=[processed_documents_accordion]
).then(
fn=process_uploaded_files,
inputs=[upload_btn, models_state, document_store_state],
outputs=[processed_documents_df],
)
processed_documents_df.select(
select_processed_document,
inputs=[processed_documents_df, document_store_state],
outputs=[document_state],
)
download_processed_documents_btn.click(
fn=download_processed_documents,
inputs=[document_store_state],
outputs=[download_processed_documents_btn],
)
upload_processed_documents_btn.upload(
fn=upload_processed_documents,
inputs=[upload_processed_documents_btn, document_store_state],
outputs=[processed_documents_df],
)
retrieve_relevant_adus_event_kwargs = dict(
fn=partial(DocumentStore.get_relevant_adus_df, columns=relevant_adus.headers),
inputs=[
document_store_state,
selected_adu_id,
document_state,
min_similarity,
top_k,
relation_types,
],
outputs=[relevant_adus],
)
selected_adu_id.change(
fn=partial(get_annotation_from_document, annotation_layer="labeled_spans"),
inputs=[document_state, selected_adu_id],
outputs=[selected_adu_text],
).success(**retrieve_relevant_adus_event_kwargs)
retrieve_similar_adus_btn.click(
fn=DocumentStore.get_similar_adus_df,
inputs=[
document_store_state,
selected_adu_id,
document_state,
min_similarity,
top_k,
],
outputs=[similar_adus],
)
models_state.change(
fn=set_relation_types,
inputs=[models_state],
outputs=[relation_types],
)
# retrieve_relevant_adus_btn.click(
# **retrieve_relevant_adus_event_kwargs
# )
js = """
() => {
function maybeSetColor(entity, colorAttributeKey, colorDictKey) {
var color = entity.getAttribute('data-color-' + colorAttributeKey);
// if color is a json string, parse it and use the value at colorDictKey
try {
const colors = JSON.parse(color);
color = colors[colorDictKey];
} catch (e) {}
if (color) {
entity.style.backgroundColor = color;
entity.style.color = '#000';
}
}
function highlightRelationArguments(entityId) {
const entities = document.querySelectorAll('.entity');
// reset all entities
entities.forEach(entity => {
const color = entity.getAttribute('data-color-original');
entity.style.backgroundColor = color;
entity.style.color = '';
});
if (entityId !== null) {
var visitedEntities = new Set();
// highlight selected entity
const selectedEntity = document.getElementById(entityId);
if (selectedEntity) {
const label = selectedEntity.getAttribute('data-label');
maybeSetColor(selectedEntity, 'selected', label);
visitedEntities.add(selectedEntity);
}
// highlight tails
const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails'));
relationTailsAndLabels.forEach(relationTail => {
const tailEntity = document.getElementById(relationTail['entity-id']);
if (tailEntity) {
const label = relationTail['label'];
maybeSetColor(tailEntity, 'tail', label);
visitedEntities.add(tailEntity);
}
});
// highlight heads
const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads'));
relationHeadsAndLabels.forEach(relationHead => {
const headEntity = document.getElementById(relationHead['entity-id']);
if (headEntity) {
const label = relationHead['label'];
maybeSetColor(headEntity, 'head', label);
visitedEntities.add(headEntity);
}
});
// highlight other entities
entities.forEach(entity => {
if (!visitedEntities.has(entity)) {
const label = entity.getAttribute('data-label');
maybeSetColor(entity, 'other', label);
}
});
}
}
function setReferenceAduId(entityId) {
// get the textarea element that holds the reference adu id
let referenceAduIdDiv = document.querySelector('#selected_adu_id textarea');
// set the value of the input field
referenceAduIdDiv.value = entityId;
// trigger an input event to update the state
var event = new Event('input');
referenceAduIdDiv.dispatchEvent(event);
}
const entities = document.querySelectorAll('.entity');
entities.forEach(entity => {
const alreadyHasListener = entity.getAttribute('data-has-listener');
if (alreadyHasListener) {
return;
}
entity.addEventListener('mouseover', () => {
highlightRelationArguments(entity.id);
setReferenceAduId(entity.id);
});
entity.addEventListener('mouseout', () => {
highlightRelationArguments(null);
});
entity.setAttribute('data-has-listener', 'true');
});
}
"""
rendered_output.change(fn=None, js=js, inputs=[], outputs=[])
demo.launch()
if __name__ == "__main__":
# configure logging
logging.basicConfig()
main()
|