File size: 14,214 Bytes
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import types
from collections import defaultdict
from typing import List, Optional, Tuple, Union

import torch
from transformers.pipelines.base import ArgumentHandler, ChunkPipeline, Dataset
from transformers.utils import is_tf_available, is_torch_available

if is_tf_available():
    import tensorflow as tf
    from transformers.models.auto.modeling_tf_auto import (
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    )
if is_torch_available():
    from transformers.models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES


def list_of_dicts2dict_of_lists(list_of_dicts: list[dict]) -> dict[str, list]:
    return {k: [d[k] for d in list_of_dicts] for k in list_of_dicts[0].keys()}


class FeatureExtractionArgumentHandler(ArgumentHandler):
    """Handles arguments for feature extraction."""

    def __call__(self, inputs: Union[str, List[str]], **kwargs):
        if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0:
            inputs = list(inputs)
            batch_size = len(inputs)
        elif isinstance(inputs, str):
            inputs = [inputs]
            batch_size = 1
        elif (
            Dataset is not None
            and isinstance(inputs, Dataset)
            or isinstance(inputs, types.GeneratorType)
        ):
            return inputs, None
        else:
            raise ValueError("At least one input is required.")

        offset_mapping = kwargs.get("offset_mapping")
        if offset_mapping:
            if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple):
                offset_mapping = [offset_mapping]
            if len(offset_mapping) != batch_size:
                raise ValueError("offset_mapping should have the same batch size as the input")
        return inputs, offset_mapping


class FeatureExtractionPipelineWithStriding(ChunkPipeline):
    """Same as transformers.FeatureExtractionPipeline, but with long input handling. Inspired by
    transformers.TokenClassificationPipeline. The functionality is triggered when providing the
    "stride" parameter (can be 0). When passing "create_unique_embeddings_per_token=True", only one
    embedding (and other data, see flags below) per token will be returned (this makes use of
    min_distance_to_border, see "return_min_distance_to_border" below for details). Note that this
    removes data for special token positions!

    Per default, it will return just the embeddings. If any of the return_ADDITIONAL_RESULT is
    enabled (see below), it will return dictionaries with "last_hidden_state" and all
    ADDITIONAL_RESULT depending on the flags.

    Flags to return additional results:
        return_offset_mapping: If enabled, return the offset mapping.
        return_special_tokens_mask: If enabled, return the special tokens mask.
        return_sequence_indices: If enabled, return the sequence indices.
        return_position_ids: If enabled, return the position ids from, values are in [0, model_max_length).
        return_min_distance_to_border: If enabled, return the minimum distance to the "border" of
            the input that gets passed into the model. This is useful when striding is used which may
            produce multiple embeddings for a token (compare values in offset_mapping). In this case,
            min_distance_to_border can be used to select the embedding that is more in the center
            of the input by choosing the entry with the *higher* min_distance_to_border.
    """

    default_input_names = "sequences"

    def __init__(self, args_parser=FeatureExtractionArgumentHandler(), *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.check_model_type(
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
            if self.framework == "tf"
            else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
        )

        self._args_parser = args_parser

    def _sanitize_parameters(
        self,
        offset_mapping: Optional[List[Tuple[int, int]]] = None,
        stride: Optional[int] = None,
        create_unique_embeddings_per_token: Optional[bool] = False,
        return_offset_mapping: Optional[bool] = None,
        return_special_tokens_mask: Optional[bool] = None,
        return_sequence_indices: Optional[bool] = None,
        return_position_ids: Optional[bool] = None,
        return_min_distance_to_border: Optional[bool] = None,
        return_tensors=None,
    ):
        preprocess_params = {}
        if offset_mapping is not None:
            preprocess_params["offset_mapping"] = offset_mapping

        if stride is not None:
            if stride >= self.tokenizer.model_max_length:
                raise ValueError(
                    "`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)"
                )

            if self.tokenizer.is_fast:
                tokenizer_params = {
                    "return_overflowing_tokens": True,
                    "padding": True,
                    "stride": stride,
                }
                preprocess_params["tokenizer_params"] = tokenizer_params  # type: ignore
            else:
                raise ValueError(
                    "`stride` was provided to process all the text but you're using a slow tokenizer."
                    " Please use a fast tokenizer."
                )
        postprocess_params = {}
        if create_unique_embeddings_per_token is not None:
            postprocess_params["create_unique_embeddings_per_token"] = (
                create_unique_embeddings_per_token
            )
        if return_offset_mapping is not None:
            postprocess_params["return_offset_mapping"] = return_offset_mapping
        if return_special_tokens_mask is not None:
            postprocess_params["return_special_tokens_mask"] = return_special_tokens_mask
        if return_sequence_indices is not None:
            postprocess_params["return_sequence_indices"] = return_sequence_indices
        if return_position_ids is not None:
            postprocess_params["return_position_ids"] = return_position_ids
        if return_min_distance_to_border is not None:
            postprocess_params["return_min_distance_to_border"] = return_min_distance_to_border
        if return_tensors is not None:
            postprocess_params["return_tensors"] = return_tensors
        return preprocess_params, {}, postprocess_params

    def __call__(self, inputs: Union[str, List[str]], **kwargs):

        _inputs, offset_mapping = self._args_parser(inputs, **kwargs)
        if offset_mapping:
            kwargs["offset_mapping"] = offset_mapping

        return super().__call__(inputs, **kwargs)

    def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
        tokenizer_params = preprocess_params.pop("tokenizer_params", {})
        truncation = (
            True
            if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0
            else False
        )
        inputs = self.tokenizer(
            sentence,
            return_tensors=self.framework,
            truncation=truncation,
            return_special_tokens_mask=True,
            return_offsets_mapping=self.tokenizer.is_fast,
            **tokenizer_params,
        )
        inputs.pop("overflow_to_sample_mapping", None)
        num_chunks = len(inputs["input_ids"])

        for i in range(num_chunks):
            if self.framework == "tf":
                model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
            else:
                model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
            if offset_mapping is not None:
                model_inputs["offset_mapping"] = offset_mapping
            model_inputs["sentence"] = sentence if i == 0 else None
            model_inputs["is_last"] = i == num_chunks - 1

            yield model_inputs

    def _forward(self, model_inputs, **kwargs):
        # Forward
        special_tokens_mask = model_inputs.pop("special_tokens_mask")
        offset_mapping = model_inputs.pop("offset_mapping", None)
        sentence = model_inputs.pop("sentence")
        is_last = model_inputs.pop("is_last")
        if self.framework == "tf":
            last_hidden_state = self.model(**model_inputs)[0]
        else:
            output = self.model(**model_inputs)
            last_hidden_state = (
                output["last_hidden_state"] if isinstance(output, dict) else output[0]
            )

        return {
            "last_hidden_state": last_hidden_state,
            "special_tokens_mask": special_tokens_mask,
            "offset_mapping": offset_mapping,
            "sentence": sentence,
            "is_last": is_last,
            **model_inputs,
        }

    def postprocess_tensor(self, data, return_tensors=False):
        if return_tensors:
            return data
        if self.framework == "pt":
            return data.tolist()
        elif self.framework == "tf":
            return data.numpy().tolist()
        else:
            raise ValueError(f"unknown framework: {self.framework}")

    def make_embeddings_unique_per_token(
        self, data, offset_mapping, special_tokens_mask, min_distance_to_border
    ):
        char_offsets2token_pos = defaultdict(list)
        bs, seq_len = offset_mapping.shape[:2]
        if bs != 1:
            raise ValueError(f"expected result batch size 1, but it is: {bs}")
        for token_idx, ((char_start, shar_end), is_special_token, min_dist) in enumerate(
            zip(
                offset_mapping[0].tolist(),
                special_tokens_mask[0].tolist(),
                min_distance_to_border[0].tolist(),
            )
        ):

            if not is_special_token:
                char_offsets2token_pos[(char_start, shar_end)].append((token_idx, min_dist))

        # tokens_with_multiple_embeddings = {k: v for k, v in char_offsets2token_pos.items() if len(v) > 1}
        char_offsets2best_token_pos = {
            k: max(v, key=lambda pos_dist: pos_dist[1])[0]
            for k, v in char_offsets2token_pos.items()
        }
        # sort by char offsets (start and end)
        sorted_char_offsets_token_positions = sorted(
            char_offsets2best_token_pos.items(),
            key=lambda char_offsets_tok_pos: (
                char_offsets_tok_pos[0][0],
                char_offsets_tok_pos[0][1],
            ),
        )
        best_indices = [tok_pos for char_offsets, tok_pos in sorted_char_offsets_token_positions]

        result = {k: v[0][best_indices].unsqueeze(0) for k, v in data.items()}
        return result

    def postprocess(
        self,
        all_outputs,
        create_unique_embeddings_per_token: bool = False,
        return_offset_mapping: bool = False,
        return_special_tokens_mask: bool = False,
        return_sequence_indices: bool = False,
        return_position_ids: bool = False,
        return_min_distance_to_border: bool = False,
        return_tensors: bool = False,
    ):

        all_outputs_dict = list_of_dicts2dict_of_lists(all_outputs)
        if self.framework == "pt":
            result = {
                "last_hidden_state": torch.concat(all_outputs_dict["last_hidden_state"], axis=1)
            }
            if return_offset_mapping or create_unique_embeddings_per_token:
                result["offset_mapping"] = torch.concat(all_outputs_dict["offset_mapping"], axis=1)
            if return_special_tokens_mask or create_unique_embeddings_per_token:
                result["special_tokens_mask"] = torch.concat(
                    all_outputs_dict["special_tokens_mask"], axis=1
                )
            if return_sequence_indices:
                sequence_indices = []
                for seq_idx, model_outputs in enumerate(all_outputs):
                    sequence_indices.append(torch.ones_like(model_outputs["input_ids"]) * seq_idx)
                result["sequence_indices"] = torch.concat(sequence_indices, axis=1)
            if return_position_ids:
                position_ids = []
                for seq_idx, model_outputs in enumerate(all_outputs):
                    seq_len = model_outputs["input_ids"].size(1)
                    position_ids.append(torch.arange(seq_len).unsqueeze(0))
                result["indices"] = torch.concat(position_ids, axis=1)
            if return_min_distance_to_border or create_unique_embeddings_per_token:
                min_distance_to_border = []
                for seq_idx, model_outputs in enumerate(all_outputs):
                    seq_len = model_outputs["input_ids"].size(1)
                    current_indices = torch.arange(seq_len).unsqueeze(0)
                    min_distance_to_border.append(
                        torch.minimum(current_indices, seq_len - current_indices)
                    )
                result["min_distance_to_border"] = torch.concat(min_distance_to_border, axis=1)
        elif self.framework == "tf":
            raise NotImplementedError()
        else:
            raise ValueError(f"unknown framework: {self.framework}")

        if create_unique_embeddings_per_token:
            offset_mapping = result["offset_mapping"]
            if not return_offset_mapping:
                del result["offset_mapping"]
            special_tokens_mask = result["special_tokens_mask"]
            if not return_special_tokens_mask:
                del result["special_tokens_mask"]
            min_distance_to_border = result["min_distance_to_border"]
            if not return_min_distance_to_border:
                del result["min_distance_to_border"]
            result = self.make_embeddings_unique_per_token(
                data=result,
                offset_mapping=offset_mapping,
                special_tokens_mask=special_tokens_mask,
                min_distance_to_border=min_distance_to_border,
            )

        result = {
            k: self.postprocess_tensor(v, return_tensors=return_tensors) for k, v in result.items()
        }
        if set(result) == {"last_hidden_state"}:
            return result["last_hidden_state"]
        else:
            return result