File size: 11,311 Bytes
3133b5e
 
 
 
 
 
 
 
 
 
ced4316
 
3133b5e
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import logging
from typing import Dict, Optional, Sequence, Tuple, Union

import gradio as gr
import pandas as pd
from pytorch_ie import Annotation
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan
from typing_extensions import Protocol

from src.langchain_modules import DocumentAwareSpanRetriever
from src.langchain_modules.span_retriever import DocumentAwareSpanRetrieverWithRelations
from src.utils import parse_config

logger = logging.getLogger(__name__)


def get_document_as_dict(retriever: DocumentAwareSpanRetriever, doc_id: str) -> Dict:
    document = retriever.get_document(doc_id=doc_id)
    return retriever.docstore.as_dict(document)


def load_retriever(
    config_str: str,
    config_format: str,
    device: str = "cpu",
    previous_retriever: Optional[DocumentAwareSpanRetrieverWithRelations] = None,
) -> DocumentAwareSpanRetrieverWithRelations:
    try:
        retriever_config = parse_config(config_str, format=config_format)
        # set device for the embeddings pipeline
        retriever_config["vectorstore"]["embedding"]["pipeline_kwargs"]["device"] = device
        result = DocumentAwareSpanRetrieverWithRelations.instantiate_from_config(retriever_config)
        # if a previous retriever is provided, load all documents and vectors from the previous retriever
        if previous_retriever is not None:
            # documents
            all_doc_ids = list(previous_retriever.docstore.yield_keys())
            gr.Info(f"Storing {len(all_doc_ids)} documents from previous retriever...")
            all_docs = previous_retriever.docstore.mget(all_doc_ids)
            result.docstore.mset([(doc.id, doc) for doc in all_docs])
            # spans (with vectors)
            all_span_ids = list(previous_retriever.vectorstore.yield_keys())
            all_spans = previous_retriever.vectorstore.mget(all_span_ids)
            result.vectorstore.mset([(span.id, span) for span in all_spans])

        gr.Info("Retriever loaded successfully.")
        return result
    except Exception as e:
        raise gr.Error(f"Failed to load retriever: {e}")


def retrieve_similar_spans(
    retriever: DocumentAwareSpanRetriever,
    query_span_id: str,
    **kwargs,
) -> pd.DataFrame:
    if not query_span_id.strip():
        raise gr.Error("No query span selected.")
    try:
        retrieval_result = retriever.invoke(input=query_span_id, **kwargs)
        records = []
        for similar_span_doc in retrieval_result:
            pie_doc, metadata = retriever.docstore.unwrap_with_metadata(similar_span_doc)
            span_ann = metadata["attached_span"]
            records.append(
                {
                    "doc_id": pie_doc.id,
                    "span_id": similar_span_doc.id,
                    "score": metadata["relevance_score"],
                    "label": span_ann.label,
                    "text": str(span_ann),
                }
            )
        return (
            pd.DataFrame(records, columns=["doc_id", "score", "label", "text", "span_id"])
            .sort_values(by="score", ascending=False)
            .round(3)
        )
    except Exception as e:
        raise gr.Error(f"Failed to retrieve similar ADUs: {e}")


def retrieve_relevant_spans(
    retriever: DocumentAwareSpanRetriever,
    query_span_id: str,
    relation_label_mapping: Optional[dict[str, str]] = None,
    **kwargs,
) -> pd.DataFrame:
    if not query_span_id.strip():
        raise gr.Error("No query span selected.")
    try:
        relation_label_mapping = relation_label_mapping or {}
        retrieval_result = retriever.invoke(input=query_span_id, return_related=True, **kwargs)
        records = []
        for relevant_span_doc in retrieval_result:
            pie_doc, metadata = retriever.docstore.unwrap_with_metadata(relevant_span_doc)
            span_ann = metadata["attached_span"]
            tail_span_ann = metadata["attached_tail_span"]
            mapped_relation_label = relation_label_mapping.get(
                metadata["relation_label"], metadata["relation_label"]
            )
            records.append(
                {
                    "doc_id": pie_doc.id,
                    "type": mapped_relation_label,
                    "rel_score": metadata["relation_score"],
                    "text": str(tail_span_ann),
                    "span_id": relevant_span_doc.id,
                    "label": tail_span_ann.label,
                    "ref_score": metadata["relevance_score"],
                    "ref_label": span_ann.label,
                    "ref_text": str(span_ann),
                    "ref_span_id": metadata["head_id"],
                }
            )
        return (
            pd.DataFrame(
                records,
                columns=[
                    "type",
                    # omitted for now, we get no valid relation scores for the generative model
                    # "rel_score",
                    "ref_score",
                    "label",
                    "text",
                    "ref_label",
                    "ref_text",
                    "doc_id",
                    "span_id",
                    "ref_span_id",
                ],
            )
            .sort_values(by=["ref_score"], ascending=False)
            .round(3)
        )
    except Exception as e:
        raise gr.Error(f"Failed to retrieve relevant ADUs: {e}")


class RetrieverCallable(Protocol):
    def __call__(
        self,
        retriever: DocumentAwareSpanRetriever,
        query_span_id: str,
        **kwargs,
    ) -> Optional[pd.DataFrame]:
        pass


def _retrieve_for_all_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    retrieve_func: RetrieverCallable,
    query_span_id_column: str = "query_span_id",
    query_span_text_column: Optional[str] = None,
    **kwargs,
) -> Optional[pd.DataFrame]:
    if not query_doc_id.strip():
        raise gr.Error("No query document selected.")
    try:
        span_id2idx = retriever.get_span_id2idx_from_doc(query_doc_id)
        gr.Info(f"Retrieving results for {len(span_id2idx)} ADUs in document {query_doc_id}...")
        span_results = {
            query_span_id: retrieve_func(
                retriever=retriever,
                query_span_id=query_span_id,
                **kwargs,
            )
            for query_span_id in span_id2idx.keys()
        }
        span_results_not_empty = {
            query_span_id: df
            for query_span_id, df in span_results.items()
            if df is not None and not df.empty
        }

        # add column with query_span_id
        for query_span_id, query_span_result in span_results_not_empty.items():
            query_span_result[query_span_id_column] = query_span_id
            if query_span_text_column is not None:
                query_span = retriever.get_span_by_id(span_id=query_span_id)
                query_span_result[query_span_text_column] = str(query_span)

        if len(span_results_not_empty) == 0:
            gr.Info(f"No results found for any ADU in document {query_doc_id}.")
            return None
        else:
            result = pd.concat(span_results_not_empty.values(), ignore_index=True)
            gr.Info(f"Retrieved {len(result)} ADUs for document {query_doc_id}.")
            return result
    except Exception as e:
        raise gr.Error(
            f'Failed to retrieve results for all ADUs in document "{query_doc_id}": {e}'
        )


def retrieve_all_similar_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_spans(
        retriever=retriever,
        query_doc_id=query_doc_id,
        retrieve_func=retrieve_similar_spans,
        **kwargs,
    )


def retrieve_all_relevant_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_spans(
        retriever=retriever,
        query_doc_id=query_doc_id,
        retrieve_func=retrieve_relevant_spans,
        **kwargs,
    )


class RetrieverForAllSpansCallable(Protocol):
    def __call__(
        self,
        retriever: DocumentAwareSpanRetriever,
        query_doc_id: str,
        **kwargs,
    ) -> Optional[pd.DataFrame]:
        pass


def _retrieve_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    retrieve_func: RetrieverForAllSpansCallable,
    query_doc_id_column: str = "query_doc_id",
    **kwargs,
) -> Optional[pd.DataFrame]:
    try:
        all_doc_ids = list(retriever.docstore.yield_keys())
        gr.Info(f"Retrieving results for {len(all_doc_ids)} documents...")
        doc_results = {
            doc_id: retrieve_func(retriever=retriever, query_doc_id=doc_id, **kwargs)
            for doc_id in all_doc_ids
        }
        doc_results_not_empty = {
            doc_id: df for doc_id, df in doc_results.items() if df is not None and not df.empty
        }
        # add column with query_doc_id
        for doc_id, doc_result in doc_results_not_empty.items():
            doc_result[query_doc_id_column] = doc_id

        if len(doc_results_not_empty) == 0:
            gr.Info("No results found for any document.")
            return None
        else:
            result = pd.concat(doc_results_not_empty, ignore_index=True)
            gr.Info(f"Retrieved {len(result)} ADUs for all documents.")
            return result
    except Exception as e:
        raise gr.Error(f"Failed to retrieve results for all documents: {e}")


def retrieve_all_similar_spans_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_documents(
        retriever=retriever,
        retrieve_func=retrieve_all_similar_spans,
        **kwargs,
    )


def retrieve_all_relevant_spans_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_documents(
        retriever=retriever,
        retrieve_func=retrieve_all_relevant_spans,
        **kwargs,
    )


def get_text_spans_and_relations_from_document(
    retriever: DocumentAwareSpanRetrieverWithRelations, document_id: str
) -> Tuple[
    str,
    Union[Sequence[LabeledSpan], Sequence[LabeledMultiSpan]],
    Dict[str, int],
    Sequence[BinaryRelation],
]:
    document = retriever.get_document(doc_id=document_id)
    pie_document = retriever.docstore.unwrap(document)
    use_predicted_annotations = retriever.use_predicted_annotations(document)
    spans = retriever.get_base_layer(
        pie_document=pie_document, use_predicted_annotations=use_predicted_annotations
    )
    relations = retriever.get_relation_layer(
        pie_document=pie_document, use_predicted_annotations=use_predicted_annotations
    )
    span_id2idx = retriever.get_span_id2idx_from_doc(document)
    return pie_document.text, spans, span_id2idx, relations


def get_span_annotation(
    retriever: DocumentAwareSpanRetriever,
    span_id: str,
) -> Annotation:
    if span_id.strip() == "":
        raise gr.Error("No span selected.")
    try:
        return retriever.get_span_by_id(span_id=span_id)
    except Exception as e:
        raise gr.Error(f"Failed to retrieve span annotation: {e}")