File size: 10,372 Bytes
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e964d07
 
 
 
 
 
 
 
 
 
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf10d9b
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
b4f6525
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
1fce9cf
1cb796d
 
1fce9cf
 
774802a
 
1fce9cf
774802a
 
 
 
 
db06f79
d6ce270
db06f79
 
d6ce270
 
 
 
 
db06f79
 
 
 
 
 
 
 
1fce9cf
db06f79
 
 
 
 
 
d6ce270
db4e781
774802a
1cb796d
 
8735d68
1cb796d
8735d68
 
1fce9cf
2f97a56
8735d68
 
1cb796d
774802a
1fce9cf
 
6b034a1
1fce9cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf10d9b
1fce9cf
cf10d9b
1fce9cf
 
 
cf10d9b
1fce9cf
 
 
 
 
 
 
cf10d9b
1fce9cf
 
 
 
 
 
cf10d9b
 
1fce9cf
db06f79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import glob
import json
import argparse
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
from datetime import datetime
from fairseq import checkpoint_utils
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
    def vc_fn(
        input_audio,
        f0_up_key,
        f0_method,
        index_rate,
        tts_mode,
        tts_text,
        tts_voice
    ):
        try:
            if tts_mode:
                if len(tts_text) > 100 and limitation:
                    return "Text is too long", None
                if tts_text is None or tts_voice is None:
                    return "You need to enter text and select a voice", None
                asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
                audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
            else:
                if input_audio is None:
                    return "You need to upload an audio", None
                sampling_rate, audio = input_audio
                duration = audio.shape[0] / sampling_rate
                if duration > 20 and limitation:
                    return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
                audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
                if len(audio.shape) > 1:
                    audio = librosa.to_mono(audio.transpose(1, 0))
                if sampling_rate != 16000:
                    audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
            times = [0, 0, 0]
            f0_up_key = int(f0_up_key)
            audio_opt = vc.pipeline(
                hubert_model,
                net_g,
                0,
                audio,
                times,
                f0_up_key,
                f0_method,
                file_index,
                index_rate,
                if_f0,
                f0_file=None,
            )
            print(
                f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
            )
            return (tgt_sr, audio_opt)
        except:
            info = traceback.format_exc()
            print(info)
            return info, (None, None)
    return vc_fn

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

def change_to_tts_mode(tts_mode):
    if tts_mode:
        return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
    else:
        return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)

if __name__ == '__main__':
    load_hubert()
    categories = []
    tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
    voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
    with open("weights/folder_info.json", "r", encoding="utf-8") as f:
        folder_info = json.load(f)
    for category_name, category_info in folder_info.items():
        if not category_info['enable']:
            continue
        category_title = category_info['title']
        category_folder = category_info['folder_path']
        description = category_info['description']
        models = []
        with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
            models_info = json.load(f)
        for model_name, info in models_info.items():
            if not info['enable']:
                continue
            model_title = info['title']
            model_author = info.get("author", None)
            model_cover = f"weights/{category_folder}/{model_name}/{info['cover']}"
            model_index = f"weights/{category_folder}/{model_name}/{info['feature_retrieval_library']}"
            cpt = torch.load(f"weights/{category_folder}/{model_name}/{model_name}.pth", map_location="cpu")
            tgt_sr = cpt["config"][-1]
            cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
            if_f0 = cpt.get("f0", 1)
            if if_f0 == 1:
                net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
            else:
                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            del net_g.enc_q
            print(net_g.load_state_dict(cpt["weight"], strict=False))
            net_g.eval().to(config.device)
            if config.is_half:
                net_g = net_g.half()
            else:
                net_g = net_g.float()
            vc = VC(tgt_sr, config)
            print(f"Model loaded: {model_name}")
            models.append((model_name, model_title, model_author, model_cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, model_index)))
        categories.append([category_title, category_folder, description, models])
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> RVC Genshin Impact\n"
            "## <center> The input audio should be clean and pure voice without background music.\n"
            "## <center> [Recommended to use google colab to use all genshin model & feature](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n"
            "### <center> I limit the number of models to 15 due to an error caused by exceeding the available memory. (16 GB limit)\n"
            "### <center> This project was inspired by [zomehwh](https://huggingface.co/spaces/zomehwh/rvc-models) and [ardha27](https://huggingface.co/spaces/ardha27/rvc-models)\n"
            "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"
            "[![Original RVC Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
            "[![RVC Inference Repo](https://badgen.net/badge/icon/github?icon=github&label)](https://github.com/ArkanDash/rvc-inference)"
        )
        for (folder_title, folder, description, models) in categories:
            with gr.TabItem(folder_title):
                if description:
                    gr.Markdown(f"### <center> {description}")
                with gr.Tabs():
                    if not models:
                        gr.Markdown("# <center> No Model Loaded.")
                        gr.Markdown("## <center> Please added the model or fix your model path.")
                        continue
                    with gr.Tabs():
                        for (name, title, author, cover, vc_fn) in models:
                            with gr.TabItem(name):
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<div>{title}</div>\n'+
                                        (f'<div>Model author: {author}</div>' if author else "")+
                                        (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
                                        '</div>'
                                    )
                                with gr.Row():
                                    with gr.Column():
                                        vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
                                        vc_transpose = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
                                        vc_f0method = gr.Radio(
                                            label="Pitch extraction algorithm",
                                            choices=["pm", "harvest"],
                                            value="pm",
                                            interactive=True,
                                            info="PM is fast but Harvest is better for low frequencies. (Default: PM)"
                                        )
                                        vc_index_ratio = gr.Slider(
                                            minimum=0,
                                            maximum=1,
                                            label="Retrieval feature ratio",
                                            value=0.6,
                                            interactive=True,
                                            info="(Default: 0.6)"
                                        )
                                        tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
                                        tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
                                        tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
                                        vc_submit = gr.Button("Generate", variant="primary")
                                    with gr.Column():
                                        vc_output = gr.Audio(label="Output Audio")
                            vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output])
                            tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
        app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)