File size: 6,317 Bytes
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9e3d2
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b886a
5c9e3d2
 
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b886a
4916b73
 
 
 
 
 
93b886a
4916b73
 
 
 
93b886a
4916b73
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import colorsys
import os

import gradio as gr
import matplotlib.colors as mcolors
import numpy as np
import torch
from gradio.themes.utils import sizes
from matplotlib import pyplot as plt
from matplotlib.patches import Patch
from PIL import Image
from torchvision import transforms

# ----------------- HELPER FUNCTIONS ----------------- #

ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")

LABELS_TO_IDS = {
    "Background": 0,
    "Apparel": 1,
    "Face Neck": 2,
    "Hair": 3,
    "Left Foot": 4,
    "Left Hand": 5,
    "Left Lower Arm": 6,
    "Left Lower Leg": 7,
    "Left Shoe": 8,
    "Left Sock": 9,
    "Left Upper Arm": 10,
    "Left Upper Leg": 11,
    "Lower Clothing": 12,
    "Right Foot": 13,
    "Right Hand": 14,
    "Right Lower Arm": 15,
    "Right Lower Leg": 16,
    "Right Shoe": 17,
    "Right Sock": 18,
    "Right Upper Arm": 19,
    "Right Upper Leg": 20,
    "Torso": 21,
    "Upper Clothing": 22,
    "Lower Lip": 23,
    "Upper Lip": 24,
    "Lower Teeth": 25,
    "Upper Teeth": 26,
    "Tongue": 27,
}


def get_palette(num_cls):
    palette = [0] * (256 * 3)
    palette[0:3] = [0, 0, 0]

    for j in range(1, num_cls):
        hue = (j - 1) / (num_cls - 1)
        saturation = 1.0
        value = 1.0 if j % 2 == 0 else 0.5
        rgb = colorsys.hsv_to_rgb(hue, saturation, value)
        r, g, b = [int(x * 255) for x in rgb]
        palette[j * 3 : j * 3 + 3] = [r, g, b]

    return palette


def create_colormap(palette):
    colormap = np.array(palette).reshape(-1, 3) / 255.0
    return mcolors.ListedColormap(colormap)


def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5):
    img_np = np.array(img.convert("RGB"))
    mask_np = np.array(mask)

    num_cls = len(labels_to_ids)
    palette = get_palette(num_cls)
    colormap = create_colormap(palette)

    overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8)
    for label, idx in labels_to_ids.items():
        if idx != 0:
            overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255

    blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha))

    return blended


def create_legend_image(labels_to_ids: dict[str, int], filename="legend.png"):
    num_cls = len(labels_to_ids)
    palette = get_palette(num_cls)
    colormap = create_colormap(palette)

    fig, ax = plt.subplots(figsize=(4, 6), facecolor="white")

    ax.axis("off")

    legend_elements = [
        Patch(facecolor=colormap(i), edgecolor="black", label=label)
        for label, i in sorted(labels_to_ids.items(), key=lambda x: x[1])
    ]

    plt.title("Legend", fontsize=16, fontweight="bold", pad=20)

    legend = ax.legend(
        handles=legend_elements,
        loc="center",
        bbox_to_anchor=(0.5, 0.5),
        ncol=2,
        frameon=True,
        fancybox=True,
        shadow=True,
        fontsize=10,
        title_fontsize=12,
        borderpad=1,
        labelspacing=1.2,
        handletextpad=0.5,
        handlelength=1.5,
        columnspacing=1.5,
    )

    legend.get_frame().set_facecolor("#FAFAFA")
    legend.get_frame().set_edgecolor("gray")

    # Adjust layout and save
    plt.tight_layout()
    plt.savefig(filename, dpi=300, bbox_inches="tight")
    plt.close()


# create_legend_image(LABELS_TO_IDS, filename=os.path.join(ASSETS_DIR, "legend.png"))


# ----------------- MODEL ----------------- #

URL = "https://huggingface.co/facebook/sapiens/resolve/main/sapiens_lite_host/torchscript/depth/checkpoints/sapiens_0.3b/sapiens_0.3b_render_people_epoch_100_torchscript.pt2?download=true"
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
model_path = os.path.join(os.path.dirname(__file__), "sapiens_0.3b_render_people_epoch_100_torchscript.pt2")

if not os.path.exists(model_path):
    os.makedirs(CHECKPOINTS_DIR, exist_ok=True)
    import requests

    response = requests.get(URL)
    with open(model_path, "wb") as file:
        file.write(response.content)

model = torch.jit.load(model_path)
model.eval()


@torch.no_grad()
def run_model(input_tensor, height, width):
    output = model(input_tensor)
    output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
    _, preds = torch.max(output, 1)
    return preds


transform_fn = transforms.Compose(
    [
        transforms.Resize((1024, 768)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)
# ----------------- CORE FUNCTION ----------------- #


def segment(image: Image.Image) -> Image.Image:
    input_tensor = transform_fn(image).unsqueeze(0)
    preds = run_model(input_tensor, height=image.height, width=image.width)
    mask = preds.squeeze(0).cpu().numpy()
    mask_image = Image.fromarray(mask.astype("uint8"))
    blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
    return blended_image


# ----------------- GRADIO UI ----------------- #


with open("banner.html", "r") as file:
    banner = file.read()
with open("tips.html", "r") as file:
    tips = file.read()

CUSTOM_CSS = """
.image-container  img {
    max-width: 512px;
    max-height: 512px;
    margin: 0 auto;
    border-radius: 0px;
.gradio-container {background-color: #fafafa}
"""

with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
    gr.HTML(banner)
    gr.HTML(tips)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil", format="png")

            '''example_model = gr.Examples(
                inputs=input_image,
                examples_per_page=10,
                examples=[
                    os.path.join(ASSETS_DIR, "examples", img)
                    for img in os.listdir(os.path.join(ASSETS_DIR, "examples"))
                ],
            )'''
        with gr.Column():
            result_image = gr.Image(label="Segmentation Result", format="png")
            run_button = gr.Button("Run")

            #gr.Image(os.path.join(ASSETS_DIR, "legend.png"), label="Legend", type="filepath")

    run_button.click(
        fn=segment,
        inputs=[input_image],
        outputs=[result_image],
    )


if __name__ == "__main__":
    demo.launch(share=False)