Spaces:
Runtime error
Runtime error
File size: 6,317 Bytes
4916b73 5c9e3d2 4916b73 93b886a 5c9e3d2 4916b73 93b886a 4916b73 93b886a 4916b73 93b886a 4916b73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import colorsys
import os
import gradio as gr
import matplotlib.colors as mcolors
import numpy as np
import torch
from gradio.themes.utils import sizes
from matplotlib import pyplot as plt
from matplotlib.patches import Patch
from PIL import Image
from torchvision import transforms
# ----------------- HELPER FUNCTIONS ----------------- #
ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")
LABELS_TO_IDS = {
"Background": 0,
"Apparel": 1,
"Face Neck": 2,
"Hair": 3,
"Left Foot": 4,
"Left Hand": 5,
"Left Lower Arm": 6,
"Left Lower Leg": 7,
"Left Shoe": 8,
"Left Sock": 9,
"Left Upper Arm": 10,
"Left Upper Leg": 11,
"Lower Clothing": 12,
"Right Foot": 13,
"Right Hand": 14,
"Right Lower Arm": 15,
"Right Lower Leg": 16,
"Right Shoe": 17,
"Right Sock": 18,
"Right Upper Arm": 19,
"Right Upper Leg": 20,
"Torso": 21,
"Upper Clothing": 22,
"Lower Lip": 23,
"Upper Lip": 24,
"Lower Teeth": 25,
"Upper Teeth": 26,
"Tongue": 27,
}
def get_palette(num_cls):
palette = [0] * (256 * 3)
palette[0:3] = [0, 0, 0]
for j in range(1, num_cls):
hue = (j - 1) / (num_cls - 1)
saturation = 1.0
value = 1.0 if j % 2 == 0 else 0.5
rgb = colorsys.hsv_to_rgb(hue, saturation, value)
r, g, b = [int(x * 255) for x in rgb]
palette[j * 3 : j * 3 + 3] = [r, g, b]
return palette
def create_colormap(palette):
colormap = np.array(palette).reshape(-1, 3) / 255.0
return mcolors.ListedColormap(colormap)
def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5):
img_np = np.array(img.convert("RGB"))
mask_np = np.array(mask)
num_cls = len(labels_to_ids)
palette = get_palette(num_cls)
colormap = create_colormap(palette)
overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8)
for label, idx in labels_to_ids.items():
if idx != 0:
overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255
blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha))
return blended
def create_legend_image(labels_to_ids: dict[str, int], filename="legend.png"):
num_cls = len(labels_to_ids)
palette = get_palette(num_cls)
colormap = create_colormap(palette)
fig, ax = plt.subplots(figsize=(4, 6), facecolor="white")
ax.axis("off")
legend_elements = [
Patch(facecolor=colormap(i), edgecolor="black", label=label)
for label, i in sorted(labels_to_ids.items(), key=lambda x: x[1])
]
plt.title("Legend", fontsize=16, fontweight="bold", pad=20)
legend = ax.legend(
handles=legend_elements,
loc="center",
bbox_to_anchor=(0.5, 0.5),
ncol=2,
frameon=True,
fancybox=True,
shadow=True,
fontsize=10,
title_fontsize=12,
borderpad=1,
labelspacing=1.2,
handletextpad=0.5,
handlelength=1.5,
columnspacing=1.5,
)
legend.get_frame().set_facecolor("#FAFAFA")
legend.get_frame().set_edgecolor("gray")
# Adjust layout and save
plt.tight_layout()
plt.savefig(filename, dpi=300, bbox_inches="tight")
plt.close()
# create_legend_image(LABELS_TO_IDS, filename=os.path.join(ASSETS_DIR, "legend.png"))
# ----------------- MODEL ----------------- #
URL = "https://huggingface.co/facebook/sapiens/resolve/main/sapiens_lite_host/torchscript/depth/checkpoints/sapiens_0.3b/sapiens_0.3b_render_people_epoch_100_torchscript.pt2?download=true"
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
model_path = os.path.join(os.path.dirname(__file__), "sapiens_0.3b_render_people_epoch_100_torchscript.pt2")
if not os.path.exists(model_path):
os.makedirs(CHECKPOINTS_DIR, exist_ok=True)
import requests
response = requests.get(URL)
with open(model_path, "wb") as file:
file.write(response.content)
model = torch.jit.load(model_path)
model.eval()
@torch.no_grad()
def run_model(input_tensor, height, width):
output = model(input_tensor)
output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
_, preds = torch.max(output, 1)
return preds
transform_fn = transforms.Compose(
[
transforms.Resize((1024, 768)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# ----------------- CORE FUNCTION ----------------- #
def segment(image: Image.Image) -> Image.Image:
input_tensor = transform_fn(image).unsqueeze(0)
preds = run_model(input_tensor, height=image.height, width=image.width)
mask = preds.squeeze(0).cpu().numpy()
mask_image = Image.fromarray(mask.astype("uint8"))
blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
return blended_image
# ----------------- GRADIO UI ----------------- #
with open("banner.html", "r") as file:
banner = file.read()
with open("tips.html", "r") as file:
tips = file.read()
CUSTOM_CSS = """
.image-container img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 0px;
.gradio-container {background-color: #fafafa}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
gr.HTML(banner)
gr.HTML(tips)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png")
'''example_model = gr.Examples(
inputs=input_image,
examples_per_page=10,
examples=[
os.path.join(ASSETS_DIR, "examples", img)
for img in os.listdir(os.path.join(ASSETS_DIR, "examples"))
],
)'''
with gr.Column():
result_image = gr.Image(label="Segmentation Result", format="png")
run_button = gr.Button("Run")
#gr.Image(os.path.join(ASSETS_DIR, "legend.png"), label="Legend", type="filepath")
run_button.click(
fn=segment,
inputs=[input_image],
outputs=[result_image],
)
if __name__ == "__main__":
demo.launch(share=False)
|