File size: 6,356 Bytes
47716cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c16f80
47716cc
 
7c16f80
47716cc
 
7c16f80
47716cc
 
7c16f80
47716cc
 
7c16f80
47716cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import random
import os
import datetime
import numpy as np


def get_text(text, hps):
    text_norm = text_to_sequence(text, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm


def tts(txt, emotion, index, hps, net_g, random_emotion_root):
    """emotion为参考情感音频路径 或random_sample(随机抽取)"""
    stn_tst = get_text(txt, hps)
    rand_wav = ""
    with torch.no_grad():
        x_tst = stn_tst.unsqueeze(0)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
        sid = torch.LongTensor([index])  ##appoint character
        if os.path.exists(f"{emotion}"):
            emo = torch.FloatTensor(np.load(f"{emotion}")).unsqueeze(0)
            rand_wav = emotion
        elif emotion == "random_sample":
            while True:
                rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0]
                if os.path.exists(f"{random_emotion_root}/{rand_wav}"):
                    break
            emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}")).unsqueeze(0)
            print(f"{random_emotion_root}/{rand_wav}")
        else:
            print("emotion参数不正确")

        audio = \
            net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1, emo=emo)[
                0][
                0, 0].data.float().numpy()
        path = random_emotion_root+"/"+rand_wav
        return audio,path


def random_generate(txt, index, hps, net_g, random_emotion_root):

    audio ,rand_wav= tts(txt, emotion='random_sample', index=index, hps=hps, net_g=net_g,
                random_emotion_root=random_emotion_root)
    return audio,rand_wav


def charaterRoot(name):
    global random_emotion_root
    if name == '九条都':
        random_emotion_root = "9nineEmo/my"
        index = 0
    elif name == '新海天':
        random_emotion_root = "9nineEmo/sr"
        index = 1
    elif name == '结城希亚':
        random_emotion_root = "9nineEmo/na"
        index = 2
    elif name == '蕾娜':
        random_emotion_root = "9nineEmo/gt"
        index = 3
    elif name == '索菲':
        random_emotion_root = "9nineEmo/sf"
        index = 4
    return random_emotion_root, index


def configSelect(config):
    global checkPonit, config_file
    if config == 'mul':
        config_file = "./configs/9nine_multi.json"
        checkPonit = "logs/9nineM/G_252000.pth"
    elif config == "single":
        config_file = "./configs/sora.json"
        checkPonit = "logs/sora/G_341200.pth"
    return config_file, checkPonit


def runVits(name, config, txt,emotion):
    config_file, checkPoint = configSelect(config)
    random_emotion_root, index = charaterRoot(name=name)
    checkPonit = checkPoint
    hps = utils.get_hparams_from_file(config_file)
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model)
    _ = net_g.eval()

    _ = utils.load_checkpoint(checkPonit, net_g, None)
    audio, rand_wav = tts(txt, emotion=emotion, index=index, hps=hps, net_g=net_g,
                          random_emotion_root=random_emotion_root)
    return (hps.data.sampling_rate, audio),rand_wav


def nineMul(name, txt):
    config = 'mul'
    audio ,rand_wav= runVits(name, config, txt,'random_sample')
    return "multiple model success", audio,rand_wav


def nineSingle(name,txt):
    config = 'single'
    # name = "新海天"
    audio ,rand_wav= runVits(name, config, txt,'random_sample')
    return "single model success", audio,rand_wav

def nineMul_select_emo(name, txt,emo):
    config = 'mul'
    # emo = "./9nine"emotion
    print(emo)
    audio, _ = runVits(name, config, txt, emo)
    message = "情感依赖:" + emo + "sythesis success!"
    return message,audio

app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("9nine multiple model"):
            character = gr.Radio(['九条都', '新海天', '结城希亚', '蕾娜', '索菲'], label='character',
                                 info="select character you want")

            text = gr.TextArea(label="input content,Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")

            submit = gr.Button("generate", variant='privite')
            message = gr.Textbox(label="Message")
            audio = gr.Audio(label="output")
            emotion = gr.Textbox(label="参照情感:")
            submit.click(nineMul, [character, text], [message, audio,emotion])
        with gr.TabItem("9nine single model"):
            character = gr.Radio(['新海天'], label='character',
                                 info="single model for 新海天 only")

            text = gr.TextArea(label="input content,Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")

            submit = gr.Button("generate", variant='privite')
            message = gr.Textbox(label="Message")
            audio = gr.Audio(label="output")
            emotion = gr.Textbox(label="参照情感:")
            submit.click(nineSingle, [character, text], [message, audio,emotion])
        with gr.TabItem("Choose Emotion Embedding"):
            character = gr.Radio(['九条都', '新海天', '结城希亚', '蕾娜', '索菲'], label='character',
                                 info="select character you want")

            text = gr.TextArea(label="input content, Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")
            emotion = gr.Textbox(label="从多人模型中获得的情感依照。例如”./9nineEmo/sf/sf0207.wav.emo.npy“,尽量使用本人的情感他人的情感会串味")
            submit = gr.Button("generate", variant='privite')
            message = gr.Textbox(label="Message")
            audio = gr.Audio(label="output")

            submit.click(nineMul_select_emo, [character, text,emotion], [message, audio])
app.launch()