File size: 9,649 Bytes
859c92c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b6f9e
 
 
 
 
 
 
 
 
 
 
 
 
859c92c
e6b6f9e
 
 
 
 
 
 
859c92c
e6b6f9e
 
 
 
 
 
 
 
 
 
859c92c
e6b6f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859c92c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0588656
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import requests
from PIL import Image, ImageEnhance, ImageFilter, ImageDraw, ImageFont
from transformers import BlipProcessor, BlipForConditionalGeneration
import streamlit as st
import torch
import os
from io import BytesIO
import barcode
from barcode.writer import ImageWriter

# Set device to CPU
device = torch.device("cpu")

# Load the BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)

# Your Gemini API key
GEMINI_API_KEY = os.getenv('gemini_api')

def generate_detailed_description(image):
    inputs = processor(image, return_tensors="pt")
    out = model.generate(**inputs)
    description = processor.decode(out[0], skip_special_tokens=True)
    return description

def suggest_enhancements(image):
    suggestions = [
        "Consider adjusting the brightness for a more vivid image.",
        "Increase contrast to make the image details stand out more.",
        "Apply sharpening to enhance image details.",
        "Use a filter to create a specific mood or style."
    ]
    return suggestions

def enhance_description_with_gemini(description):
    url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={GEMINI_API_KEY}"
    headers = {"Content-Type": "application/json"}
    data = {
        "contents": [
            {
                "parts": [
                    {
                        "text": (
                            f"Based on the following description of an image, provide a more detailed description, "
                            f"generate possible captions, and suggest logo ideas. \n\n"
                            f"Description: {description}\n\n"
                            f"Detailed Description:\n"
                            f"Captions:\n"
                            f"Logo Suggestions:\n"
                        )
                    }
                ]
            }
        ]
    }
    
    try:
        response = requests.post(url, headers=headers, json=data)
        response.raise_for_status()
        response_json = response.json()
        if "candidates" in response_json and len(response_json["candidates"]) > 0:
            candidate = response_json["candidates"][0]
            if "content" in candidate and "parts" in candidate["content"]:
                parts = candidate["content"]["parts"]
                if len(parts) > 0:
                    return parts[0].get("text", "No response text found")
        return "No contents or parts in response"
    except requests.exceptions.RequestException as e:
        return f"Request failed: {e}"
def create_label(image, ingredients, usage, expiry_date, barcode_data):
    try:
        # Create an image for the label
        label_image = Image.new('RGB', (800, 1200), color='white')
        draw = ImageDraw.Draw(label_image)

        # Define font and size
        try:
            font = ImageFont.truetype("arial.ttf", 24)
        except IOError:
            font = ImageFont.load_default()
        
        # Draw the main image
        image.thumbnail((600, 400))
        label_image.paste(image, (100, 50))

        # Draw text
        text_position = (100, 500)
        draw.text(text_position, f"Ingredients:\n{ingredients}", font=font, fill="black")
        text_position = (100, 600)
        draw.text(text_position, f"Usage:\n{usage}", font=font, fill="black")
        text_position = (100, 700)
        draw.text(text_position, f"Expiry Date: {expiry_date}", font=font, fill="black")

        # Draw barcode
        if len(barcode_data) == 12:  # Check length for EAN-13
            barcode_image = generate_barcode(barcode_data)
            label_image.paste(barcode_image, (100, 800))
        else:
            draw.text((100, 800), "Invalid Barcode Data", font=font, fill="red")
        
        return label_image
    except Exception as e:
        raise RuntimeError(f"Error generating label: {e}")

# Streamlit interface continuation
if st.button('Generate Label'):
    if ingredients and usage and expiry_date and barcode_data:
        try:
            label_image = create_label(image, ingredients, usage, expiry_date, barcode_data)
            st.image(label_image, caption="Generated Label")
        except Exception as e:
            st.error(f"Error generating label: {e}")
    else:
        st.error("Please provide all required details for the label.")

def generate_barcode(data):
    code = barcode.get('ean13', data, writer=ImageWriter())
    barcode_image = code.render()
    return barcode_image

# Streamlit interface
st.title("Image Detailed Description, Captions, Logo Suggestions Generator with Image Enhancement Options")

# Custom CSS for the button style and alignment
st.markdown("""
    <style>
    .download-button-container {
        display: flex;
        justify-content: flex-end;
        margin-top: -45px; /* Adjust this value to align with the image */
    }
    .stDownloadButton button {
        background-color: #4CAF50; /* Green background */
        color: white; /* White text */
        padding: 10px 20px; /* Padding */
        border: none; /* No border */
        border-radius: 5px; /* Rounded corners */
        text-align: center; /* Centered text */
        text-decoration: none; /* No underline */
        display: inline-block; /* Make the link behave like a button */
        font-size: 16px; /* Increase font size */
        margin: 4px 2px; /* Margin */
        cursor: pointer; /* Pointer cursor on hover */
        transition-duration: 0.4s; /* Transition for hover effect */
    }
    .stDownloadButton button:hover {
        background-color: #45a049; /* Darker green on hover */
    }
    </style>
""", unsafe_allow_html=True)

# Session state to store the descriptions
if 'initial_description' not in st.session_state:
    st.session_state['initial_description'] = None
if 'enhanced_text' not in st.session_state:
    st.session_state['enhanced_text'] = None

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
img_url = st.text_input("Or enter image URL...")

if uploaded_file or img_url:
    if uploaded_file:
        image = Image.open(uploaded_file).convert('RGB')
    else:
        response = requests.get(img_url, stream=True)
        image = Image.open(response.raw).convert('RGB')

    st.image(image, caption="Uploaded Image", use_column_width=True)

    if st.session_state['initial_description'] is None:
        with st.spinner("Generating caption..."):
            initial_description = generate_detailed_description(image)
            enhanced_text = enhance_description_with_gemini(initial_description)
            st.session_state['initial_description'] = initial_description
            st.session_state['enhanced_text'] = enhanced_text
    else:
        initial_description = st.session_state['initial_description']
        enhanced_text = st.session_state['enhanced_text']

    st.subheader("Initial Description")
    st.write(initial_description)

    st.subheader("Enhanced Description, Captions, and Logo Suggestions with Image Enhancement Options")
    st.write(enhanced_text)

    # Function to generate and show enhancement suggestions
    def show_enhancements(image, effect_name):
        buffer = BytesIO()
        image.save(buffer, format="PNG")
        buffer.seek(0)

        st.markdown('<div class="download-button-container">', unsafe_allow_html=True)
        st.download_button(
            label=f"Download {effect_name} Image",
            data=buffer,
            file_name=f"{effect_name}_image.png",
            mime="image/png"
        )
        st.markdown('</div>', unsafe_allow_html=True)

    # Display enhancement options
    st.subheader("Enhancement Options")

    if st.button('Increase Brightness'):
        enhancer = ImageEnhance.Brightness(image)
        enhanced_image = enhancer.enhance(1.5)
        st.image(enhanced_image, caption="Enhanced Brightness")
        show_enhancements(enhanced_image, "Brightness")

    if st.button('Increase Contrast'):
        enhancer = ImageEnhance.Contrast(image)
        enhanced_image = enhancer.enhance(1.5)
        st.image(enhanced_image, caption="Enhanced Contrast")
        show_enhancements(enhanced_image, "Contrast")

    if st.button('Sharpen Image'):
        enhanced_image = image.filter(ImageFilter.SHARPEN)
        st.image(enhanced_image, caption="Sharpened Image")
        show_enhancements(enhanced_image, "Sharpen")

    if st.button('Apply Gaussian Blur'):
        enhanced_image = image.filter(ImageFilter.GaussianBlur(radius=2))
        st.image(enhanced_image, caption="Blurred Image")
        show_enhancements(enhanced_image, "Blur")

    if st.button('Apply Edge Enhancement'):
        enhanced_image = image.filter(ImageFilter.EDGE_ENHANCE)
        st.image(enhanced_image, caption="Edge Enhanced Image")
        show_enhancements(enhanced_image, "Edge Enhancement")

    # Inputs for label details
    st.subheader("Generate Label")
    ingredients = st.text_area("Ingredients")
    usage = st.text_area("Usage Instructions")
    expiry_date = st.text_input("Expiry Date (e.g., 2024-12-31)")
    barcode_data = st.text_input("Barcode Data")

    if st.button('Generate Label'):
        if ingredients and usage and expiry_date and barcode_data:
            try:
                label_image = create_label(image, ingredients, usage, expiry_date, barcode_data)
                st.image(label_image)
            except Exception as e:
                st.error(f"Error generating label: {e}")