File size: 7,732 Bytes
c3cc0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Dataset Plan for AI/ML Models

This document outlines the datasets required for implementing the AI/ML functionalities described in the ai_plan.md file. For each model, we'll provide the CSV structure and example records.

## 1. Intelligent Routing and Workflow Automation

### 1.1 Grievance Data (grievances.csv)

Fields:
- grievance_id (string)
- category (string)
- submission_timestamp (datetime)
- student_room_no (string)
- hostel_name (string)
- floor_number (integer)

Examples:
```csv
grievance_id,category,submission_timestamp,student_room_no,hostel_name,floor_number
G12345,plumber,2023-10-01T10:30:00Z,204,bh1,2
G12346,electricity,2023-10-02T08:15:00Z,101,bh2,1
G12347,internet,2023-10-03T14:20:00Z,305,bh3,3
G12348,water cooler,2023-10-04T09:45:00Z,102,ivh,1
G12349,sweeper,2023-10-05T11:00:00Z,201,gh,2
G12350,carpenter,2023-10-06T13:30:00Z,303,bh1,3
```

### 1.2 Staff Data (staff.csv)

Fields:
- staff_id (string)
- department (string)
- current_workload (integer)
- availability_status (string)
- past_resolution_rate (float)

Examples:
```csv
staff_id,department,current_workload,availability_status,past_resolution_rate
S67890,plumber,5,Available,0.95
S67891,electricity,3,Available,0.92
S67892,internet,4,Unavailable,0.88
S67893,water cooler,2,Available,0.97
S67894,sweeper,6,Available,0.91
S67895,carpenter,1,Available,0.94
```

### 1.3 Historical Assignments (historical_assignments.csv)

Fields:
- grievance_id (string)
- staff_id (string)
- assignment_timestamp (datetime)
- resolution_time (string)
- outcome (string)
- floor_number (integer)

Examples:
```csv
grievance_id,staff_id,assignment_timestamp,resolution_time,outcome,floor_number
G12340,S67890,2023-09-25T09:00:00Z,2 hours,Resolved Successfully,1
G12341,S67891,2023-09-26T10:30:00Z,1 hour,Resolved Successfully,2
G12342,S67892,2023-09-27T14:15:00Z,3 hours,Unresolved,3
G12343,S67893,2023-09-28T11:45:00Z,30 minutes,Resolved Successfully,1
G12344,S67894,2023-09-29T08:30:00Z,1 hour,Resolved Successfully,2
G12345,S67895,2023-09-30T13:00:00Z,2 hours,Pending,3
```

### 1.4 Floor Metrics (floor_metrics.csv)

Fields:
- hostel_name (string)
- floor_number (integer)
- date (date)
- number_of_requests (integer)
- total_delays (integer)

Examples:
```csv
hostel_name,floor_number,date,number_of_requests,total_delays
bh1,2,2023-10-01,20,2
bh2,1,2023-10-02,15,1
bh3,3,2023-10-03,18,3
ivh,1,2023-10-04,12,0
gh,2,2023-10-05,22,4
```

### 1.5 Availability Data (availability.csv)

Fields:
- id (string)
- type (string) # 'staff' or 'student'
- date (date)
- time_slot (string)
- availability_status (string)

Examples:
```csv
id,type,date,time_slot,availability_status
S67890,staff,2023-10-02,09:00-12:00,Available
S67891,staff,2023-10-02,14:00-17:00,Unavailable
STU123,student,2023-10-02,10:00-12:00,Available
STU124,student,2023-10-02,14:00-16:00,Unavailable
S67892,staff,2023-10-03,08:00-11:00,Available
STU125,student,2023-10-03,09:00-11:00,Available
```

## 2. Advanced Sentiment and Emotional Intelligence Analysis

### 2.1 Grievance Sentiment Data (grievance_sentiment.csv)

Fields:
- grievance_id (string)
- text (string)
- emotional_label (string)

Example:
```csv
grievance_id,text,emotional_label
G12347,"I am extremely frustrated with the constant power outages in my room.",Frustration
G12348,"Thank you for resolving my issue so quickly.",Satisfaction
```

## 3. Context-Aware Chatbots for Initial Grievance Handling

### 3.1 Conversation Dataset (conversations.csv)

Fields:
- conversation_id (string)
- user_message (string)
- intent (string)
- entities (string, JSON format)
- bot_response (string)

Example:
```csv
conversation_id,user_message,intent,entities,bot_response
C12345,"I want to report a broken heater in my room.",submit_grievance,"{'grievance_type': 'Broken Heater', 'room_number': '305'}","I'm sorry to hear that. Could you please provide your room number?"
```

### 3.2 FAQs Dataset (faqs.csv)

Fields:
- question_id (string)
- question (string)
- answer (string)

Example:
```csv
question_id,question,answer
Q12345,"How can I check the status of my grievance?","You can check the status by logging into your dashboard and navigating to the 'My Grievances' section."
```

## 4. Anomaly Detection in Grievance Patterns

### 4.1 Grievance Logs (grievance_logs.csv)

Fields:
- grievance_id (string)
- category (string)
- timestamp (datetime)
- description (string)

Example:
```csv
grievance_id,category,timestamp,description
G12350,Plumbing,2023-10-03T14:20:00Z,"Clogged drain in the kitchen area."
```

### 4.2 Anomaly Indicators (anomaly_indicators.csv)

Fields:
- date (date)
- category (string)
- grievance_count (integer)
- is_anomaly (boolean)

Example:
```csv
date,category,grievance_count,is_anomaly
2023-10-01,Electrical,50,false
2023-10-02,Electrical,150,true
```

## 5. Multilingual Translation in Chatroom

### 5.1 Translation Pairs (translation_pairs.csv)

Fields:
- pair_id (string)
- source_language (string)
- target_language (string)
- source_sentence (string)
- target_sentence (string)

Example:
```csv
pair_id,source_language,target_language,source_sentence,target_sentence
TP12345,Hindi,English,"toilet me paani nahi aa rha hain","There is no water coming in the toilet."
```

### 5.2 Language Preferences (language_preferences.csv)

Fields:
- user_id (string)
- preferred_language (string)

Example:
```csv
user_id,preferred_language
U12345,Hindi
W67890,English
```

## 6. Worker Job Recommendation

### 6.1 Job Requests (job_requests.csv)

Fields:
- job_id (string)
- type (string)
- description (string)
- urgency_level (string)
- submission_timestamp (datetime)
- hostel_name (string)
- floor_number (integer)
- room_number (string)

Example:
```csv
job_id,type,description,urgency_level,submission_timestamp,hostel_name,floor_number,room_number
J12345,Electrical,"Fan not working in room 204.",High,2023-10-02T08:15:00Z,Hostel A,2,204
```

### 6.2 Worker Profiles (worker_profiles.csv)

Fields:
- worker_id (string)
- department (string)
- current_workload (integer)
- availability_status (string)
- job_success_rate (float)

Example:
```csv
worker_id,department,current_workload,availability_status,job_success_rate
W67890,Electrical,3,Available,0.95
```

### 6.3 Historical Job Assignments (historical_job_assignments.csv)

Fields:
- job_id (string)
- worker_id (string)
- assignment_timestamp (datetime)
- resolution_time (string)
- outcome (string)
- hostel_name (string)
- floor_number (integer)
- room_number (string)

Example:
```csv
job_id,worker_id,assignment_timestamp,resolution_time,outcome,hostel_name,floor_number,room_number
J12340,W67885,2023-09-25T09:00:00Z,2 hours,Resolved Successfully,Hostel A,1,101
```

### 6.4 Worker Locations (worker_locations.csv)

Fields:
- worker_id (string)
- timestamp (datetime)
- hostel_name (string)
- floor_number (integer)
- room_number (string)

Example:
```csv
worker_id,timestamp,hostel_name,floor_number,room_number
W67890,2023-10-02T08:00:00Z,Hostel A,2,210
```
```
data/
β”‚
β”œβ”€β”€ intelligent_routing/
β”‚   β”œβ”€β”€ grievances.csv
β”‚   β”œβ”€β”€ staff.csv
β”‚   β”œβ”€β”€ historical_assignments.csv
β”‚   β”œβ”€β”€ floor_metrics.csv
β”‚   └── availability.csv
β”‚
β”œβ”€β”€ sentiment_analysis/
β”‚   └── grievance_sentiment.csv
β”‚
β”œβ”€β”€ chatbot/
β”‚   β”œβ”€β”€ conversations.csv
β”‚   └── faqs.csv
β”‚
β”œβ”€β”€ anomaly_detection/
β”‚   β”œβ”€β”€ grievance_logs.csv
β”‚   └── anomaly_indicators.csv
β”‚
β”œβ”€β”€ multilingual_translation/
β”‚   β”œβ”€β”€ translation_pairs.csv
β”‚   └── language_preferences.csv
β”‚
└── job_recommendation/
    β”œβ”€β”€ job_requests.csv
    β”œβ”€β”€ worker_profiles.csv
    β”œβ”€β”€ historical_job_assignments.csv
    └── worker_locations.csv

```