File size: 1,690 Bytes
7e92170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3c39b6
7e92170
 
 
b3c39b6
 
7e92170
b3c39b6
 
 
 
 
7e92170
 
b3c39b6
7e92170
 
4f4776c
7e92170
 
 
b3c39b6
7e92170
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import lancedb
import gradio as gr
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os

db = lancedb.connect(".lancedb")

TABLE = db.open_table(os.getenv("TABLE_NAME"))
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))
CROSS_ENCODER = os.getenv("CROSS_ENCODER")

retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
cross_encoder = AutoModelForSequenceClassification.from_pretrained(CROSS_ENCODER)
cross_encoder.eval()

cross_encoder_tokenizer = AutoTokenizer.from_pretrained(CROSS_ENCODER)


def reranking(query, list_of_documents, k):
    received_tokens = cross_encoder_tokenizer([query] * len(list_of_documents), list_of_documents, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        logits_on_tokens = cross_encoder(**received_tokens).logits
    probabilities = logits_on_tokens.reshape(-1).tolist()
    documents = sorted(zip(list_of_documents, probabilities), key=lambda x: x[1], reverse=True)
    result = [document[0] for document in documents[:k]]
    return result


def retrieve(query, top_k_retriever=30, use_reranking=True, top_k_reranker=5):
    query_vec = retriever.encode(query)
    try:
        documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(top_k_retriever).to_list()
        documents = [doc[TEXT_COLUMN] for doc in documents]

        if use_reranking:
            documents = reranking(query, documents, top_k_reranker)

        return documents

    except Exception as e:
        raise gr.Error(str(e))