Spaces:
Sleeping
Sleeping
File size: 14,382 Bytes
c102038 823b9f5 e34a2a6 c102038 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 c713637 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 c102038 e34a2a6 823b9f5 e34a2a6 823b9f5 c102038 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 823b9f5 e34a2a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import boto3
from langchain_community.vectorstores import Qdrant
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.runnables.base import RunnableLambda
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import StructuredTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.messages import AIMessage
from typing import List, Optional
from chat_utils import get_init_modules, SYSTEM_PROMPT, SYSTEM_PROMPT_LOOP, ContextInput, Answer, get_vectorDB_module
from langchain_core.documents.base import Document
from langchain_core.runnables import ConfigurableField
import qdrant_client.models as rest
class EurLexChat:
def __init__(self, config: dict):
self.config = config
self.max_history_messages = self.config["max_history_messages"]
self.vectorDB_class = self.config['vectorDB']['class']
self.use_functions = (
'use_context_function' in config["llm"] and
config["llm"]["use_context_function"] and
config["llm"]["class"] == "ChatOpenAI")
self.embedder, self.llm, self.chatDB_class, self.retriever, retriever_chain = get_init_modules(
config)
self.max_context_size = config["llm"]["max_context_size"]
self.prompt = ChatPromptTemplate.from_messages([
("system", SYSTEM_PROMPT),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
])
self.prompt_loop = ChatPromptTemplate.from_messages([
("system", SYSTEM_PROMPT_LOOP),
("human", "History: {history}. Message:"),
])
self.chain_loop_answer = ( self.prompt_loop | self.llm )
if self.use_functions:
GET_CONTEXT_TOOL = StructuredTool.from_function(
func=self.get_context,
name="get_context",
description="To be used whenever the provided context is empty or the user changes the topic of the conversation and you need the context for the topic. " +
"To be used whenever you need context to answer the question. " +
"Do not make up an answer, rely solely on the information provided by the context. ",
args_schema=ContextInput
)
self.llm_with_functions = self.llm.bind(
tools=[convert_to_openai_tool(GET_CONTEXT_TOOL)]
)
chain = (
self.prompt |
RunnableLambda(self._resize_history) |
self.llm_with_functions
)
else:
chain = (
self.prompt |
RunnableLambda(self._resize_history) |
self.llm
)
self.chain_with_history = RunnableWithMessageHistory(
chain,
self.get_chat_history,
input_messages_key="question",
history_messages_key="history",
)
self.relevant_documents_pipeline = (retriever_chain | self._parse_documents)
def _resize_history(self, input_dict):
"""
Resize the message history.
Args:
input_dict: The llm input containing the message history.
Returns:
dict: The resized version of the input_dict.
"""
messages = input_dict.messages
if (len(messages) - 2) > self.max_history_messages:
messages = [messages[0]] + messages[-(self.max_history_messages + 1):]
input_dict.messages = messages
return input_dict
def get_chat_history(self, session_id: str):
"""
Retrieve chat history instance for a specific session ID.
Args:
session_id (str): The unique identifier for the session.
Returns:
Chat history object: An instance of the appropriate chat history class.
"""
kwargs = self.config["chatDB"]["kwargs"]
if self.config["chatDB"]["class"] == 'FileChatMessageHistory':
file_path = f"{kwargs['output_path']}/{session_id}.json"
return self.chatDB_class(file_path=file_path)
elif self.config["chatDB"]["class"] == 'DynamoDBChatMessageHistory':
table_name = kwargs["table_name"]
session = boto3.Session(aws_access_key_id=kwargs["aws_access_key_id"],
aws_secret_access_key=kwargs["aws_secret_access_key"],
region_name='eu-west-1')
return self.chatDB_class(session_id=session_id,
table_name=table_name,
boto3_session=session)
else:
return self.chatDB_class(session_id=session_id, **kwargs)
def _parse_documents(self, docs: List[Document]) -> List[dict]:
"""
Parse a list of documents into a standardized format.
Args:
docs (List[Document]): A list of documents to parse.
Returns:
List[dict]: A list of dictionaries, each containing parsed information from the input documents.
"""
parsed_documents = []
for doc in docs:
parsed_documents.append({
'text': doc.page_content,
'source': doc.metadata["source"],
'celex': doc.metadata["celex"],
'_id': doc.metadata["_id"]
})
return parsed_documents
def _format_context_docs(self, context_docs: List[dict]) -> str:
"""
Format a list of documents into a single string.
Args:
context_docs (List[dict]): A list of dictionaries containing text from context documents.
Returns:
str: A string containing the concatenated text from all context documents.
"""
context_str = ''
for doc in context_docs:
context_str += doc['text'] + "\n\n"
return context_str
def get_ids_from_celexes(self, celex_list: List[str]):
"""
Retrieve the IDs of the documents given their CELEX numbers.
Args:
celex_list (List[str]): A list of CELEX numbers.
Returns:
List[str]: A list of document IDs corresponding to the provided CELEX numbers
"""
if self.vectorDB_class == 'Qdrant':
scroll_filter = rest.Filter(
must=[
rest.FieldCondition(
key="celex",
match=rest.MatchAny(any=celex_list),
)
])
offset = -1
ids = []
while not (offset is None and offset != -1):
if offset == -1:
offset = None
points, offset = self.retriever.vectorstore.client.scroll(
collection_name=self.retriever.vectorstore.collection_name,
limit=100,
offset=offset,
scroll_filter=scroll_filter,
with_payload=False
)
ids.extend([p.id for p in points])
else:
NotImplementedError(f"Not supported {self.vectorDB_class} vectorDB class")
return ids
def _get_qdrant_ids_filter(self, ids):
"""
Returns a Qdrant filter to filter documents based on their IDs.
This function acts as a workaround due to a hidden bug in Qdrant
that prevents correct filtering using CELEX numbers.
Args:
ids (List[str]): A list of document IDs.
Returns:
Qdrant filter: A Qdrant filter to filter documents based on their IDs.
"""
filter = rest.Filter(
must=[
rest.HasIdCondition(has_id=ids),
],
)
return filter
def get_relevant_docs(self, question: str, ids_list: Optional[List[str]] = None) -> List[dict]:
"""
Retrieve relevant documents based on a given question.
If ids_list is provided, the search is filtered by the given IDs.
Args:
question (str): The question for which relevant documents are retrieved.
ids_list (Optional[List[str]]): A list of document IDs to filter the search results.
Returns:
List[dict]: A list of relevant documents.
"""
if ids_list:
search_kwargs = {k:v for k,v in self.retriever.search_kwargs.items()}
if self.vectorDB_class == 'Qdrant':
filter = self._get_qdrant_ids_filter(ids_list)
else:
raise ValueError(f'Celex filter not supported for {self.vectorDB_class}')
search_kwargs.update({'filter': filter})
docs = self.relevant_documents_pipeline.invoke(
{'question': question},
config={"configurable": {"search_kwargs": search_kwargs}})
else:
docs = self.relevant_documents_pipeline.invoke({'question': question})
return docs
def get_context(self, text: str, ids_list:Optional[List[str]]=None) -> str:
"""
Retrieve context for a given text.
If ids_list is provided, the search is filtered by the given IDs.
Args:
text (str): The text for which context is retrieved.
ids_list (Optional[List[str]]): A list of document IDs to filter the search results.
Returns:
str: A formatted string containing the relevant documents texts.
"""
docs = self.get_relevant_docs(text, ids_list=ids_list)
return self._format_context_docs(docs)
def _remove_last_messages(self, session_id:str, n:int) -> None:
"""
Remove last n messages from the chat history of a specific session.
Args:
session_id (str): The session ID for which messages are removed.
n (int): The number of last messages to remove.
"""
chat_history = self.get_chat_history(session_id=session_id)
message_history = chat_history.messages
chat_history.clear()
message_history = message_history[:-n]
for message in message_history:
chat_history.add_message(message)
def _format_history(self, session_id:str) -> str:
"""
Format chat history for a specific session into a string.
Args:
session_id (str): The session ID for which the chat history is formatted.
Returns:
str: A formatted string containing the chat history for the specified session.
"""
chat_history = self.get_chat_history(session_id).messages
formatted_history = ""
for message in chat_history:
formatted_history += f"{message.type}: {message.content}\n\n"
return formatted_history
def _resize_context(self, context_docs: List[dict]) -> List[dict]:
"""
Resize the dimension of the context in terms of number of tokens.
If the concatenation of document text exceeds max_context_size,
the document text is cut off to meet the limit.
Args:
context_docs (List[dict]): List of formatted documents.
Returns:
List[dict]: Returns the list of resized documents.
"""
lengths = [self.llm.get_num_tokens(doc['text']) for doc in context_docs]
resized_contexts = []
total_len = 0
for i, l in enumerate(lengths):
if l + total_len <= self.max_context_size:
resized_contexts.append(context_docs[i])
total_len += l
return resized_contexts
def get_answer(self,
session_id: str,
question: str,
context_docs: List[dict],
from_tool: bool = False,
ids_list: List[str] = None
) -> Answer:
"""
Get an answer to a question of a specific session, considering context documents and history messages.
If ids_list is provided, any search for new context documents is filtered by the given IDs.
Args:
session_id (str): The session ID for which the answer is retrieved.
question (str): The new user message.
context_docs (List[dict]): A list of documents used as context to answer the user message.
from_tool (bool, optional): Whether the question originates from a tool. Defaults to False.
ids_list (Optional[List[str]]): A list of document IDs to filter the search results for new context documents.
Returns:
Answer: An object containing the answer along with a new list of context documents
if those provided are insufficient to answer the question.
"""
resized_docs = self._resize_context(context_docs)
context = self._format_context_docs(resized_docs)
result = self.chain_with_history.invoke(
{"context": context, "question": question},
config={"configurable": {"session_id": session_id}}
)
if self.use_functions and len(result.additional_kwargs) > 0:
if from_tool:
self._remove_last_messages(session_id=session_id, n=1)
history = self._format_history(session_id)
result = self.chain_loop_answer.invoke({'history': history})
self.get_chat_history(session_id=session_id).add_message(AIMessage(result.content))
return Answer(answer=result.content, status=-1)
text = eval(result.additional_kwargs['tool_calls'][0]['function']['arguments'])['text']
new_docs = self.get_relevant_docs(text, ids_list=ids_list)
self._remove_last_messages(session_id=session_id, n=2)
result = self.get_answer(
session_id=session_id,
question=question,
context_docs=new_docs,
from_tool=True,
ids_list=ids_list
)
if result.status == 1:
return Answer(answer=result.answer, new_documents=new_docs)
else:
return Answer(answer=result.answer)
return Answer(answer=result.content) |