File size: 7,241 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import torch
import importlib
import torch.distributed as dist

try:
    # noinspection PyUnresolvedReferences
    from apex import amp
except ImportError:
    amp = None

def relative_bias_interpolate(checkpoint,config):
    for k in list(checkpoint['model']):
        if 'relative_position_index' in k:
            del checkpoint['model'][k]
        if 'relative_position_bias_table' in k:
            relative_position_bias_table = checkpoint['model'][k]
            cls_bias = relative_position_bias_table[:1,:]
            relative_position_bias_table = relative_position_bias_table[1:,:]
            size = int(relative_position_bias_table.shape[0]**0.5)
            img_size = (size+1)//2
            if 'stage_3' in k:
                downsample_ratio = 16
            elif 'stage_4' in k:
                downsample_ratio = 32
            new_img_size = config.DATA.IMG_SIZE//downsample_ratio
            new_size = 2*new_img_size-1
            if new_size == size:
                continue
            relative_position_bias_table = relative_position_bias_table.reshape(size,size,-1)
            relative_position_bias_table = relative_position_bias_table.unsqueeze(0).permute(0,3,1,2)#bs,nhead,h,w
            relative_position_bias_table = torch.nn.functional.interpolate(
                relative_position_bias_table, size=(new_size, new_size), mode='bicubic', align_corners=False)
            relative_position_bias_table = relative_position_bias_table.permute(0,2,3,1)
            relative_position_bias_table = relative_position_bias_table.squeeze(0).reshape(new_size*new_size,-1)
            relative_position_bias_table = torch.cat((cls_bias,relative_position_bias_table),dim=0)
            checkpoint['model'][k] = relative_position_bias_table
    return checkpoint
    
    
def load_pretained(config,model,logger=None,strict=False):
    if logger is not None:
        logger.info(f"==============> pretrain form {config.MODEL.PRETRAINED}....................")
    checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
    if 'model' not in checkpoint:
        if 'state_dict_ema' in checkpoint:
            checkpoint['model'] = checkpoint['state_dict_ema']
        else:
            checkpoint['model'] = checkpoint
    if config.MODEL.DORP_HEAD:
        if 'head.weight' in checkpoint['model'] and 'head.bias' in checkpoint['model']:
            if logger is not None:
                logger.info(f"==============> drop head....................")
            del checkpoint['model']['head.weight']
            del checkpoint['model']['head.bias']
        if 'head.fc.weight' in checkpoint['model'] and 'head.fc.bias' in checkpoint['model']:
            if logger is not None:
                logger.info(f"==============> drop head....................")
            del checkpoint['model']['head.fc.weight']
            del checkpoint['model']['head.fc.bias']
    if config.MODEL.DORP_META:
        if logger is not None:
            logger.info(f"==============> drop meta head....................")
        for k in list(checkpoint['model']):
            if 'meta' in k:
                del checkpoint['model'][k]
            
    checkpoint = relative_bias_interpolate(checkpoint,config)
    if 'point_coord' in checkpoint['model']:
        if logger is not None:
            logger.info(f"==============> drop point coord....................")
        del checkpoint['model']['point_coord']
    msg = model.load_state_dict(checkpoint['model'], strict=strict)
    del checkpoint
    torch.cuda.empty_cache()


def load_checkpoint(config, model, optimizer, lr_scheduler, logger):
    logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
    if config.MODEL.RESUME.startswith('https'):
        checkpoint = torch.hub.load_state_dict_from_url(
            config.MODEL.RESUME, map_location='cpu', check_hash=True)
    else:
        checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
    if 'model' not in checkpoint:
        if 'state_dict_ema' in checkpoint:
            checkpoint['model'] = checkpoint['state_dict_ema']
        else:
            checkpoint['model'] = checkpoint
    msg = model.load_state_dict(checkpoint['model'], strict=False)
    logger.info(msg)
    max_accuracy = 0.0
    if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        config.defrost()
        config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
        config.freeze()
        if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0":
            amp.load_state_dict(checkpoint['amp'])
        logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
        if 'max_accuracy' in checkpoint:
            max_accuracy = checkpoint['max_accuracy']

    del checkpoint
    torch.cuda.empty_cache()
    return max_accuracy


def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger):
    save_state = {'model': model.state_dict(),
                  'optimizer': optimizer.state_dict(),
                  'lr_scheduler': lr_scheduler.state_dict(),
                  'max_accuracy': max_accuracy,
                  'epoch': epoch,
                  'config': config}
    if config.AMP_OPT_LEVEL != "O0":
        save_state['amp'] = amp.state_dict()

    save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
    logger.info(f"{save_path} saving......")
    torch.save(save_state, save_path)
    logger.info(f"{save_path} saved !!!")
    
    
    lastest_save_path = os.path.join(config.OUTPUT, f'latest.pth')
    logger.info(f"{lastest_save_path} saving......")
    torch.save(save_state, lastest_save_path)
    logger.info(f"{lastest_save_path} saved !!!")



def get_grad_norm(parameters, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
    total_norm = total_norm ** (1. / norm_type)
    return total_norm


def auto_resume_helper(output_dir):
    checkpoints = os.listdir(output_dir)
    checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
    print(f"All checkpoints founded in {output_dir}: {checkpoints}")
    if len(checkpoints) > 0:
        latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
        print(f"The latest checkpoint founded: {latest_checkpoint}")
        resume_file = latest_checkpoint
    else:
        resume_file = None
    return resume_file


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    rt /= dist.get_world_size()
    return rt




def load_ext(name, funcs):
    ext = importlib.import_module(name)
    for fun in funcs:
        assert hasattr(ext, fun), f'{fun} miss in module {name}'
    return ext