Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,473 Bytes
8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 71373b0 8eb8cdc 64bc7e5 5b3df43 64bc7e5 5b3df43 3359719 1868ef5 3359719 1868ef5 3359719 4946fa6 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc 3359719 8eb8cdc f3b1625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os, re, sys
import spaces
import traceback
import torch
import numpy as np
from num2words import num2words
from datetime import timedelta
import datetime
from utils.mm_utils import (
KeywordsStoppingCriteria,
get_model_name_from_path,
tokenizer_mm_token,
ApolloMMLoader
)
from utils.conversation import conv_templates, SeparatorStyle
from utils.constants import (
X_TOKEN,
X_TOKEN_INDEX,
)
from decord import cpu, VideoReader
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import gradio as gr
import zipfile
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
title_markdown = """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1 >You are chatting with Apollo-3B</h1>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
<a href='https://apollo-lmms.github.io/Apollo/'><img src='https://img.shields.io/badge/Project-Apollo-deepskyblue'></a>
<a href='https://huggingface.co/Apollo-LMMs/Apollo-3B'><img src='https://img.shields.io/badge/model-checkpoints-gold'></a>
</div>
</div>
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
color: #9C276A
}
"""
plum_color = gr.themes.colors.Color(
name='plum',
c50='#F8E4EF',
c100='#E9D0DE',
c200='#DABCCD',
c300='#CBA8BC',
c400='#BC94AB',
c500='#AD809A',
c600='#9E6C89',
c700='#8F5878',
c800='#804467',
c900='#713056',
c950='#662647',
)
token = os.getenv("HUGGINGFACE_API_KEY")
model_url = os.getenv("model_url")
model_path = snapshot_download(model_url, repo_type="model", use_auth_token=token)
source_path = model_path + '/data.zip'
with zipfile.ZipFile(source_path, 'r') as zip_ref:
zip_ref.extractall('./tmp')
destination_path = './tmp/data'
class Chat:
def __init__(self):
self.version = "qwen_1_5"
model_name = "apollo"
device = "cuda" if torch.cuda.is_available() else "cpu"
attn_implementation="sdpa" if torch.__version__ > "2.1.2" else "eager"
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
attn_implementation=attn_implementation,
).to(device=device, dtype=torch.bfloat16)
self._model = model
self._tokenizer = model.tokenizer
self._vision_processors = model.vision_tower.vision_processor
self._max_length = model.config.llm_cfg['model_max_length']
self._config = self._model.config
self.num_repeat_token = self._config.mm_connector_cfg['num_output_tokens'] #todo: get from config
self.mm_use_im_start_end = self._config.use_mm_start_end
frames_per_clip = 4
clip_duration=getattr(self._config, 'clip_duration')
self.mm_processor = ApolloMMLoader(self._vision_processors,
clip_duration,
frames_per_clip,
clip_sampling_ratio=0.65,
model_max_length = self._config.model_max_length,
device=device,
num_repeat_token=self.num_repeat_token)
self._model.config.encode_batch_size = 35
self._model.eval()
def remove_after_last_dot(self, s):
last_dot_index = s.rfind('.')
if last_dot_index == -1:
return s
return s[:last_dot_index + 1]
def apply_first_prompt(self, message, replace_string, data_type):
if self.mm_use_im_start_end:
message = X_START_TOKEN[data_type] + replace_string + X_END_TOKEN[data_type] + '\n\n' + message
else:
message = (replace_string) + '\n\n' + message
return message
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
# TODO: support multiple turns of conversation.
mm_data, replace_string, data_type = data[0]
print(message)
conv = conv_templates[self.version].copy()
if isinstance(message, str):
message = self.apply_first_prompt(message, replace_string, data_type)
conv.append_message(conv.roles[0], message)
elif isinstance(message, list):
if X_TOKEN[data_type] not in message[0]['content']:
print('applying prompt')
message[0]['content'] = self.apply_first_prompt(message[0]['content'], replace_string, data_type)
for mes in message:
conv.append_message(mes["role"], mes["content"])
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
print(prompt.replace(X_TOKEN['video'],'<v>'))
input_ids = tokenizer_mm_token(prompt, self._tokenizer, return_tensors="pt").unsqueeze(0).cuda().to(self._model.device)
pad_token_ids = self._tokenizer.pad_token_id if self._tokenizer.pad_token_id is not None else self._tokenizer.eos_token_id
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self._tokenizer, input_ids)
print(f'running on {input_ids.shape[1]} tokens!')
with torch.inference_mode():
output_ids = self._model.generate(input_ids,
vision_input=[mm_data],
data_types=[data_type],
do_sample=True if temperature > 0 else False,
temperature=temperature,
max_new_tokens=max_output_tokens,
top_p=top_p,
use_cache=True,
num_beams=1,
stopping_criteria=[stopping_criteria])
print(f'generated on {output_ids.shape[1]} tokens!')
print(output_ids)
pred = self._tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(pred)
return self.remove_after_last_dot(pred)
@spaces.GPU(duration=120)
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
print(message)
if textbox_in is None:
raise gr.Error("Chat messages cannot be empty")
return (
gr.update(value=image, interactive=True),
gr.update(value=video, interactive=True),
message,
chatbot,
None,
)
data = []
mm_processor = handler.mm_processor
try:
if image is not None:
image, prompt = mm_processor.load_image(image)
data.append((image, prompt, 'image'))
elif video is not None:
video_tensor, prompt = mm_processor.load_video(video)
data.append((video_tensor, prompt, 'video'))
elif image is None and video is None:
data.append((None, None, 'text'))
else:
raise NotImplementedError("Not support image and video at the same time")
except Exception as e:
traceback.print_exc()
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot, None
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
show_images = ""
if image is not None:
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
if video is not None:
show_images += f'<video controls playsinline width="300" style="display: inline-block;" src="./file={video}"></video>'
one_turn_chat = [textbox_in, None]
# 1. first run case
if len(chatbot) == 0:
one_turn_chat[0] += "\n" + show_images
# 2. not first run case
else:
# scanning the last image or video
length = len(chatbot)
for i in range(length - 1, -1, -1):
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[i][0])
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[i][0])
if len(previous_image) > 0:
previous_image = previous_image[-1]
# 2.1 new image append or pure text input will start a new conversation
if (video is not None) or (image is not None and os.path.basename(previous_image) != os.path.basename(image)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
elif len(previous_video) > 0:
previous_video = previous_video[-1]
# 2.2 new video append or pure text input will start a new conversation
if image is not None or (video is not None and os.path.basename(previous_video) != os.path.basename(video)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
message.append({'role': 'user', 'content': textbox_in})
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
message.append({'role': 'assistant', 'content': text_en_out})
one_turn_chat[1] = text_en_out
chatbot.append(one_turn_chat)
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot, None
def regenerate(message, chatbot):
message.pop(-1), message.pop(-1)
chatbot.pop(-1)
return message, chatbot
def clear_history(message, chatbot):
message.clear(), chatbot.clear()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
message, chatbot,
gr.update(value=None, interactive=True))
handler = Chat()
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
with gr.Blocks(title='Apollo-3B', theme=theme, css=block_css) as demo:
gr.Markdown(title_markdown)
message = gr.State([])
with gr.Row():
with gr.Column(scale=3):
image = gr.State(None)
video = gr.Video(label="Input Video")
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.4,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=32,
maximum=1024,
value=256,
step=32,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Apollo", bubble_full_width=True, height=420)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
with gr.Row():
with gr.Column():
gr.Examples(
examples=[
[
f"{destination_path}/example1.mp4",
"At what time in the video is Peter Thompson interviewed? Respond in seconds, and describe what he is wearing.",
],
[
f"{destination_path}/example2.mp4",
"What watch brands appear in the video?",
],
[
f"{destination_path}/example3.mp4",
"What are the two people discussing?",
],
],
inputs=[video, textbox],
)
submit_btn.click(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot, textbox])
textbox.submit(
generate,
[
image,
video,
message,
chatbot,
textbox,
temperature,
top_p,
max_output_tokens,
],
[image, video, message, chatbot, textbox],
)
regenerate_btn.click(
regenerate,
[message, chatbot],
[message, chatbot]).then(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot])
clear_btn.click(
clear_history,
[message, chatbot],
[image, video, message, chatbot, textbox])
demo.launch()
|