File size: 11,918 Bytes
9075da4
3e6f170
 
 
 
 
 
9075da4
 
 
7f64564
d8b8c6e
9e19de5
3e6f170
d39e8b2
4be1339
3e6f170
 
 
e43178a
 
 
 
12b30cf
e43178a
 
 
 
 
 
 
cd9fed4
3e6f170
e775d9e
3e6f170
 
 
bd32138
3e6f170
 
e775d9e
fb9705e
3e6f170
0213ff4
d10e112
 
791174e
 
 
 
5810836
 
82cc289
0213ff4
 
27f6b96
 
 
82cc289
 
 
d10e112
485fdd6
 
 
 
5810836
 
485fdd6
0213ff4
 
9e42346
485fdd6
 
 
 
 
d10e112
485fdd6
 
 
 
5810836
 
 
485fdd6
0213ff4
9e42346
0213ff4
485fdd6
 
 
 
 
b9f307f
b92d8c2
 
 
 
b9f307f
3e6f170
 
 
 
87379a7
3e6f170
 
 
4ee25e6
3e6f170
 
416fcc5
3e6f170
 
 
416fcc5
3e6f170
416fcc5
 
3e6f170
 
 
 
 
 
 
 
 
 
0f06269
 
3e6f170
 
 
 
 
 
 
 
 
 
c548949
94b8a22
3e6f170
 
c2acc27
3e6f170
 
 
 
38003a2
94b8a22
3e6f170
 
 
 
 
32d0db2
94b8a22
3e6f170
 
 
 
 
38003a2
abe034a
3e6f170
 
 
 
 
94714d0
b9f307f
3e6f170
b9f307f
 
 
 
 
 
 
 
 
3e6f170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39e8b2
3e6f170
 
d39e8b2
3e6f170
 
 
 
 
 
34306fc
3e6f170
 
94b8a22
3e6f170
676f6dd
5c4f47a
676f6dd
 
105a53e
 
 
3e6f170
d39e8b2
3e6f170
 
 
 
 
 
 
0f06269
3e6f170
e775d9e
5967c31
3e6f170
87379a7
3e6f170
 
 
 
 
 
 
 
0f06269
3e6f170
9be22c6
3e6f170
 
e3bd452
e43178a
3e6f170
 
 
 
 
 
 
 
0f06269
3e6f170
 
 
0f06269
 
3e6f170
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from safetensors import safe_open
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import hf_hub_download

model_id = 'aipicasso/emi'
auth_token=os.environ["ACCESS_TOKEN"]

scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", use_auth_token=auth_token)

pipe = StableDiffusionXLPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler, use_auth_token=auth_token)
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

#ckpt_file=hf_hub_download(repo_id=model_id, filename="v2.safetensors", token=auth_token)
#pipe = StableDiffusionXLPipeline.from_single_file(
#    ckpt_file,
#    torch_dtype=torch.float16,
#    scheduler=scheduler
#)
#pipe.load_lora_weights("manual.safetensors")

pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler,
  use_auth_token=auth_token
)

pipe=pipe.to("cuda")
pipe_i2i=pipe_i2i.to("cuda")

token_num=65

unaestheticXLv31=""
embeddings_dict = {}
with safe_open("unaestheticXLv31.safetensors", framework="pt") as f:
    for k in f.keys():
        embeddings_dict[k] = f.get_tensor(k)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
    token = f"sksd{chr(token_num)}"
    token_num+=1
    unaestheticXLv31 += token
    pipe.tokenizer.add_tokens(token)
    token_id = pipe.tokenizer.convert_tokens_to_ids(token)
    pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
    pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]

unaestheticXLv1=""
embeddings_dict = {}
with safe_open("unaestheticXLv1.safetensors", framework="pt") as f:
    for k in f.keys():
        embeddings_dict[k] = f.get_tensor(k)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
    token = f"sksd{chr(token_num)}"
    token_num+=1
    unaestheticXLv1 += token
    pipe.tokenizer.add_tokens(token)
    token_id = pipe.tokenizer.convert_tokens_to_ids(token)
    pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
    pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]

unaestheticXLv13=""
embeddings_dict = {}
with safe_open("unaestheticXLv13.safetensors", framework="pt") as f:
    for k in f.keys():
        embeddings_dict[k] = f.get_tensor(k)

pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
    token = f"sksd{chr(token_num)}"
    unaestheticXLv13 += token
    token_num+=1
    pipe.tokenizer.add_tokens(token)
    token_id = pipe.tokenizer.convert_tokens_to_ids(token)
    pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
    pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]


compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , 
                text_encoder=[pipe.text_encoder, pipe.text_encoder_2], 
                returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, 
                requires_pooled=[False, True])

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def inference(prompt, guidance, steps, image_size="Landscape", seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False, image_style="Animetic", original_model=False):
  
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None

  prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction)

  if(image_size=="Portrait"):
      height=1344
      width=768
  elif(image_size=="Landscape"):
      height=768
      width=1344
  else:
      height=1024
      width=1024

  print(prompt,neg_prompt)
    
  try:
    if img is not None:
      return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
    else:
      return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
  except Exception as e:
    return None, error_str(e)

def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction):
    # auto prompt correction
    prompt=str(prompt_ui)
    neg_prompt=str(neg_prompt_ui)
    prompt=prompt.lower()
    neg_prompt=neg_prompt.lower()
    
    if(disable_auto_prompt_correction):
        return prompt, neg_prompt

    if(prompt=="" and neg_prompt==""):
        prompt="1girl++, smile--, brown bob+++ hair, brown eyes, sunflowers, sky, transparent++"
        neg_prompt=f"({unaestheticXLv31})---, photo, deformed, realism, disfigured, low contrast, bad hand"
        return prompt, neg_prompt

    splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ")
    
    human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
    for word in human_words:
        if( word in splited_prompt):
            prompt=f"ime artwork, anime style, {prompt}"
            neg_prompt=f"({unaestheticXLv31})---,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand" 
            return prompt, neg_prompt
            
    animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
    for word in animal_words:
        if( word in splited_prompt):
            prompt=f"anime style, a {prompt}, 4k, detailed"
            neg_prompt=f"{neg_prompt},({unaestheticXLv31})---" 
            return prompt, neg_prompt
            
    background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
    for word in background_words:
        if( word in splited_prompt):
            prompt=f"ime artwork, anime style, {prompt}, highly detailed"
            neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
            return prompt, neg_prompt
            
    return prompt,neg_prompt
    
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
    conditioning, pooled = compel([prompt, neg_prompt])
    
    result = pipe(
        prompt_embeds=conditioning[0:1],
        pooled_prompt_embeds=pooled[0:1], 
        negative_prompt_embeds=conditioning[1:2], 
        negative_pooled_prompt_embeds=pooled[1:2],
        num_inference_steps = int(steps),
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
    
    return result.images[0]

def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe_i2i(
        prompt,
        negative_prompt = neg_prompt,
        image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        generator = generator)
        
    return result.images[0]

css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="main-div">
              <div>
                <h1>Emi Demo</h1>
              </div>
              <p>
               Demo for <a href="https://huggingface.co/aipicasso/emi">Emi</a><br>
              </p>
              <p>
              サンプル: そのままGenerateボタンを押してください。<br>
              sample : Click "Generate" button without any prompts.
              </p>
              <p>
              sample prompt1 : 1girl++, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+
              </p>
              <p>
              sample prompt2 : 1man+, focus, wavy short hair, blue eyes, black shirt, white background, simple background
              </p>
              <p>
              sample prompt3 : anime style, 1girl++
              </p>
              <p>
              共有ボタンを押してみんなに画像を共有しましょう。Please push share button to share your image.
              </p>
              <p>
              Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} <br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]")
                generate = gr.Button(value="Generate")

              image_out = gr.Image(height=768,width=1344)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
              disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
              with gr.Row():
                image_size=gr.Radio(["Portrait","Landscape","Square"])
                image_size.show_label=False
                image_size.value="Square"
                
              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=25)
                steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
                  
    inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, disable_auto_prompt_correction]

    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)
    
demo.queue(concurrency_count=1)
demo.launch()