File size: 4,323 Bytes
a929b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf1c47
 
a929b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import numpy as np
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
from utils import second_to_timecode, download_from_youtube

MODEL_NAME = 'openai/whisper-medium'
lang = 'en'

chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000

######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token="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")
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=chunk_length_s, device=device)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

print("----------> Loaded models <-----------")

def generator(youtube_link, microphone, file_upload, num_speakers, max_duration, history):

    if int(youtube_link != '') + int(microphone is not None) + int(file_upload is not None) != 1:
        raise Exception(f"Only one of the source should be given youtube_link={youtube_link}, microphone={microphone}, file_upload={file_upload}")

    history = history or ""
    
    if microphone:
        path = microphone
    elif file_upload:
        path = file_upload
    elif youtube_link:
        path = download_from_youtube(youtube_link)
    
    waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)

    print(waveform.shape, sampling_rate)
    waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)

    dia_result = dia_model({
        "waveform": waveform_tensor,
        "sample_rate": sampling_rate,
    }, num_speakers=num_speakers)
    
    for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
        print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
        _start = int(sampling_rate * speech_turn.start)
        _end = int(sampling_rate * speech_turn.end)
        data = waveform[_start: _end]

        if speech_turn.end - speech_turn.start > vad_activation_min_duration:
            print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
            vad_output = vad_model({
                'waveform': waveform_tensor[:, _start:_end],
                'sample_rate': sampling_rate})
            for vad_turn in vad_output.get_timeline().support():
                vad_start = _start + int(sampling_rate * vad_turn.start)
                vad_end = _start + int(sampling_rate * vad_turn.end)
                prediction = pipe(waveform[vad_start: vad_end])['text']
                history +=  f"{second_to_timecode(speech_turn.start + vad_turn.start)},{second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
                            f"{prediction}\n\n"
                            # f">> {speaker}: {prediction}\n\n"
                yield history, history, None

        else:
            prediction = pipe(data)['text']
            history +=  f"{second_to_timecode(speech_turn.start)},{second_to_timecode(speech_turn.end)}\n" + \
                        f"{prediction}\n\n"
                        # f">> {speaker}: {prediction}\n\n"

        yield history, history, None
    
    # https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
    file_name = 'transcript.sbv'
    with open(file_name, 'w') as fp:
        fp.write(history)
    
    yield history, history, file_name

demo = gr.Interface(
    generator, 
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
        gr.Number(value=1, label="Number of Speakers"),
        gr.Number(value=120, label="Maximum Duration (Seconds)"),
        'state',
    ],
    outputs=['text', 'state', 'file'],
    layout="horizontal",
    theme="huggingface",
    allow_flagging="never",
)

# define queue - required for generators
demo.queue()

demo.launch()