File size: 10,351 Bytes
a77ea34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import pandas as pd
import yfinance as yf
import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
from transformers import pipeline
import gradio as gr
import plotly.graph_objects as go
from datetime import datetime, timedelta
import threading
import time

# Check if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

class FinancialGNN(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(FinancialGNN, self).__init__()
        self.conv1 = GCNConv(input_dim, hidden_dim)
        self.conv2 = GCNConv(hidden_dim, output_dim)
        
    def forward(self, x, edge_index):
        # Add error handling for input dimensions
        if x.dim() != 2:
            raise ValueError(f"Expected 2D input tensor, got {x.dim()}D")
        
        x = self.conv1(x, edge_index)
        x = torch.relu(x)
        x = self.conv2(x, edge_index)
        return x

class MarketAnalysisSystem:
    def __init__(self):
        try:
            # Initialize sentiment analyzer with error handling
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="distilbert-base-uncased-finetuned-sst-2-english",
                device=0 if torch.cuda.is_available() else -1
            )
        except Exception as e:
            print(f"Error initializing sentiment analyzer: {e}")
            self.sentiment_analyzer = None

        # Initialize GNN model
        self.gnn_model = FinancialGNN(input_dim=5, hidden_dim=32, output_dim=1).to(device)
        
        # Define default stock symbols
        self.symbols = ['AAPL', 'GOOGL', 'MSFT', 'AMZN', 'META']
        
        # Initialize data storage
        self.market_data = {}
        self.sentiment_scores = {}
        
        # Initialize monitoring flag and thread
        self.monitoring = False
        self.monitor_thread = None

    def collect_market_data(self, symbols=None):
        if symbols is None:
            symbols = self.symbols
            
        if not symbols:
            raise ValueError("No symbols provided for market data collection")

        end_date = datetime.now()
        start_date = end_date - timedelta(days=30)
        
        market_data = {}
        for symbol in symbols:
            try:
                stock = yf.download(symbol, start=start_date, end=end_date, progress=False)
                if stock.empty:
                    print(f"No data available for {symbol}")
                    continue
                market_data[symbol] = stock
            except Exception as e:
                print(f"Error collecting data for {symbol}: {e}")
                continue

        if not market_data:
            raise ValueError("No market data could be collected for any symbol")
            
        return market_data

    def analyze_sentiment(self, symbol):
        if self.sentiment_analyzer is None:
            return 0
            
        try:
            # In practice, you should implement real news fetching here
            sample_news = f"Latest news about {symbol} shows positive market momentum"
            sentiment = self.sentiment_analyzer(sample_news)[0]
            return sentiment['score'] if sentiment['label'] == 'POSITIVE' else -sentiment['score']
        except Exception as e:
            print(f"Error in sentiment analysis for {symbol}: {e}")
            return 0

    def prepare_graph_features(self, market_data):
        if not market_data:
            raise ValueError("No market data available for feature preparation")
            
        features = []
        for symbol in market_data:
            df = market_data[symbol]
            if len(df) > 0:
                try:
                    feature_vector = torch.tensor([
                        df['Close'].pct_change().fillna(0).mean(),
                        df['Close'].pct_change().fillna(0).std(),
                        df['Volume'].fillna(0).mean(),
                        df['High'].max(),
                        df['Low'].min()
                    ], dtype=torch.float32)
                    features.append(feature_vector)
                except Exception as e:
                    print(f"Error preparing features for {symbol}: {e}")
                    continue

        if not features:
            raise ValueError("Could not prepare features for any symbol")
            
        return torch.stack(features).to(device)

    def create_correlation_edges(self, market_data):
        n = len(market_data)
        if n < 2:
            raise ValueError("Need at least 2 symbols to create correlation edges")
            
        edges = []
        for i in range(n):
            for j in range(i+1, n):
                edges.append([i, j])
                edges.append([j, i])
                
        return torch.tensor(edges, dtype=torch.long).t().to(device)

    def predict_market_trends(self):
        try:
            market_data = self.collect_market_data()
            features = self.prepare_graph_features(market_data)
            edge_index = self.create_correlation_edges(market_data)
            
            with torch.no_grad():
                predictions = self.gnn_model(features, edge_index)
                
            return predictions.cpu().numpy()
        except Exception as e:
            print(f"Error predicting market trends: {e}")
            return np.zeros(len(self.symbols))

    def generate_market_visualization(self, market_data):
        if not market_data:
            raise ValueError("No market data available for visualization")
            
        fig = go.Figure()
        
        for symbol in market_data:
            df = market_data[symbol]
            if not df.empty:
                fig.add_trace(go.Scatter(
                    x=df.index,
                    y=df['Close'],
                    name=symbol,
                    mode='lines'
                ))
        
        fig.update_layout(
            title='Market Trends',
            xaxis_title='Date',
            yaxis_title='Price',
            template='plotly_dark'
        )
        
        return fig

    def start_monitoring(self):
        if self.monitoring:
            return
            
        self.monitoring = True
        self.monitor_thread = threading.Thread(target=self._monitoring_loop)
        self.monitor_thread.daemon = True
        self.monitor_thread.start()

    def _monitoring_loop(self):
        while self.monitoring:
            try:
                self.market_data = self.collect_market_data()
                for symbol in self.symbols:
                    self.sentiment_scores[symbol] = self.analyze_sentiment(symbol)
                time.sleep(300)  # Update every 5 minutes
            except Exception as e:
                print(f"Error in monitoring loop: {e}")
                time.sleep(60)  # Wait a minute before retrying

    def stop_monitoring(self):
        self.monitoring = False
        if self.monitor_thread:
            self.monitor_thread.join(timeout=1)

def create_gradio_interface():
    market_system = MarketAnalysisSystem()

    def analyze_markets(symbols_input):
        try:
            # Input validation
            if not symbols_input.strip():
                return (
                    None,
                    "Error: Please enter at least one stock symbol",
                    "Error: No symbols provided"
                )
                
            symbols = [s.strip() for s in symbols_input.split(',') if s.strip()]
            
            # Collect and analyze market data
            try:
                market_data = market_system.collect_market_data(symbols)
            except Exception as e:
                return (
                    None,
                    f"Error collecting market data: {str(e)}",
                    "Unable to analyze trends"
                )

            # Generate visualization
            try:
                fig = market_system.generate_market_visualization(market_data)
            except Exception as e:
                fig = None
                print(f"Error generating visualization: {e}")

            # Get sentiment scores
            sentiments = {symbol: market_system.analyze_sentiment(symbol) for symbol in symbols}
            sentiment_text = "\n".join([f"{symbol}: {score:.2f}" for symbol, score in sentiments.items()])

            # Predict trends
            try:
                predictions = market_system.predict_market_trends()
                prediction_text = "\n".join([
                    f"{symbol}: {'Upward' if pred > 0 else 'Downward'} trend"
                    for symbol, pred in zip(symbols, predictions[:len(symbols)])
                ])
            except Exception as e:
                prediction_text = f"Error predicting trends: {str(e)}"

            return fig, sentiment_text, prediction_text
            
        except Exception as e:
            return None, f"Error: {str(e)}", "Analysis failed"

    interface = gr.Interface(
        fn=analyze_markets,
        inputs=gr.Textbox(
            label="Enter stock symbols (comma-separated)",
            value="AAPL,GOOGL,MSFT"
        ),
        outputs=[
            gr.Plot(label="Market Trends"),
            gr.Textbox(label="Sentiment Analysis"),
            gr.Textbox(label="Trend Predictions")
        ],
        title="Real-Time Market Analysis System",
        description="Enter stock symbols to analyze market trends, sentiment, and predictions."
    )
    
    return interface

if __name__ == "__main__":
    # Ensure all required packages are imported
    required_packages = {
        'numpy': np,
        'pandas': pd,
        'yfinance': yf,
        'torch': torch,
        'transformers': pipeline,
        'gradio': gr,
        'plotly': go
    }
    
    missing_packages = []
    for package, module in required_packages.items():
        if module is None:
            missing_packages.append(package)
    
    if missing_packages:
        print(f"Missing required packages: {', '.join(missing_packages)}")
        print("Please install them using pip:")
        print(f"pip install {' '.join(missing_packages)}")
    else:
        interface = create_gradio_interface()
        interface.launch(debug=True)