File size: 13,351 Bytes
64b49ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
import numpy as np
import pandas as pd
from typing import Dict
import time
from sklearn.metrics import accuracy_score, mean_squared_error, classification_report
import torch
import torch.nn as nn
import matplotlib.pyplot as plt

# Additional ML helper functions
def evaluate_ml_solution(y_true, y_pred, task_type='classification'):
    """Evaluate ML model predictions"""
    if task_type == 'classification':
        accuracy = accuracy_score(y_true, y_pred)
        report = classification_report(y_true, y_pred)
        return f"Accuracy: {accuracy:.4f}\n\nDetailed Report:\n{report}"
    else:
        mse = mean_squared_error(y_true, y_pred)
        rmse = np.sqrt(mse)
        return f"MSE: {mse:.4f}\nRMSE: {rmse:.4f}"

# Extended problem set including ML problems
PROBLEM_DATA = {
    # Original Algorithm Problems
    "Valid Parentheses": {
        "type": "algorithm",
        "difficulty": "easy",
        "description": "Given a string s containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.",
        "test_cases": [
            {'input': "()", 'expected': True},
            {'input': "()[]{}", 'expected': True},
            {'input': "(]", 'expected': False}
        ],
        "sample_input": "()",
        "starter_code": """def solution(s: str) -> bool:
    # Write your solution here
    pass"""
    },
    
    # ML Classification Problem
    "Binary Classification": {
        "type": "ml_classification",
        "difficulty": "medium",
        "description": "Create a binary classifier for the provided dataset. Features include numerical values, target is binary (0/1).",
        "test_cases": [
            {
                'input': pd.DataFrame({
                    'feature1': [1.2, 2.3, 3.4, 4.5],
                    'feature2': [2.1, 3.2, 4.3, 5.4]
                }),
                'expected': np.array([0, 1, 1, 0])
            }
        ],
        "starter_code": """class MLSolution:
    def __init__(self):
        self.model = None
    
    def fit(self, X, y):
        # Implement training logic
        pass
    
    def predict(self, X):
        # Implement prediction logic
        return np.zeros(len(X))"""
    },
    
    # Neural Network Problem
    "Simple Neural Network": {
        "type": "deep_learning",
        "difficulty": "hard",
        "description": "Implement a simple neural network for binary classification using PyTorch.",
        "test_cases": [
            {
                'input': torch.randn(10, 5),  # 10 samples, 5 features
                'expected': torch.randint(0, 2, (10,))
            }
        ],
        "starter_code": """class NeuralNetwork(nn.Module):
    def __init__(self, input_size):
        super(NeuralNetwork, self).__init__()
        self.layer1 = nn.Linear(input_size, 64)
        self.layer2 = nn.Linear(64, 1)
        self.sigmoid = nn.Sigmoid()
    
    def forward(self, x):
        x = torch.relu(self.layer1(x))
        x = self.sigmoid(self.layer2(x))
        return x"""
    },
    
    # Regression Problem
    "House Price Prediction": {
        "type": "ml_regression",
        "difficulty": "medium",
        "description": "Implement a regression model to predict house prices based on features like size, location, etc.",
        "test_cases": [
            {
                'input': pd.DataFrame({
                    'size': [1500, 2000, 2500],
                    'rooms': [3, 4, 5],
                    'location_score': [8, 7, 9]
                }),
                'expected': np.array([250000, 300000, 400000])
            }
        ],
        "starter_code": """class RegressionSolution:
    def __init__(self):
        self.model = None
        
    def fit(self, X, y):
        # Implement training logic
        pass
        
    def predict(self, X):
        # Implement prediction logic
        return np.zeros(len(X))"""
    }
}

def create_sample_data(problem_type: str) -> Dict:
    """Create sample datasets for ML problems"""
    if problem_type == 'ml_classification':
        X_train = pd.DataFrame(np.random.randn(100, 2), columns=['feature1', 'feature2'])
        y_train = np.random.randint(0, 2, 100)
        X_test = pd.DataFrame(np.random.randn(20, 2), columns=['feature1', 'feature2'])
        y_test = np.random.randint(0, 2, 20)
        return {'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test}
    
    elif problem_type == 'ml_regression':
        X_train = pd.DataFrame(np.random.randn(100, 3), 
                             columns=['size', 'rooms', 'location_score'])
        y_train = np.random.uniform(200000, 500000, 100)
        X_test = pd.DataFrame(np.random.randn(20, 3), 
                            columns=['size', 'rooms', 'location_score'])
        y_test = np.random.uniform(200000, 500000, 20)
        return {'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test}
    
    elif problem_type == 'deep_learning':
        # Generate sample data for neural network
        X_train = torch.randn(100, 5)  # 100 samples, 5 features
        y_train = torch.randint(0, 2, (100,))  # Binary classification
        X_test = torch.randn(20, 5)  # 20 samples, 5 features
        y_test = torch.randint(0, 2, (20,))  # Binary classification
        return {'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test}
    
    return None

def run_tests(problem_name: str, user_code: str) -> str:
    try:
        problem = PROBLEM_DATA[problem_name]
        
        if problem["type"] == "algorithm":
            # Execute algorithm problems
            namespace = {}
            exec(user_code, namespace)
            results = []
            
            for i, test in enumerate(problem["test_cases"], 1):
                try:
                    start_time = time.time()
                    output = namespace["solution"](test["input"])
                    execution_time = time.time() - start_time
                    
                    passed = output == test["expected"]
                    results.append(
                        f"Test #{i}:\n"
                        f"Input: {test['input']}\n"
                        f"Expected: {test['expected']}\n"
                        f"Got: {output}\n"
                        f"Time: {execution_time:.6f}s\n"
                        f"Status: {'✓ PASSED' if passed else '✗ FAILED'}\n"
                    )
                except Exception as e:
                    results.append(f"Test #{i} Error: {str(e)}\n")
                    
            return "\n".join(results)
            
        else:
            # Execute ML problems
            namespace = {"np": np, "pd": pd, "nn": nn, "torch": torch}
            exec(user_code, namespace)
            
            # Create sample data
            data = create_sample_data(problem["type"])
            if not data:
                return "Error: Invalid problem type"
                
            try:
                if problem["type"] in ["ml_classification", "ml_regression"]:
                    # Initialize and train model
                    model = namespace["MLSolution"]()
                    model.fit(data["X_train"], data["y_train"])
                    
                    # Make predictions
                    predictions = model.predict(data["X_test"])
                    
                    # Evaluate
                    eval_result = evaluate_ml_solution(
                        data["y_test"], 
                        predictions,
                        "classification" if problem["type"] == "ml_classification" else "regression"
                    )
                    
                    return f"Model Evaluation:\n{eval_result}"
                    
                elif problem["type"] == "deep_learning":
                    # Initialize neural network
                    model = namespace["NeuralNetwork"](data["X_train"].shape[1])
                    criterion = nn.BCELoss()  # Binary cross-entropy loss
                    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
                    
                    # Convert data to tensors
                    X_train = data["X_train"].float()
                    y_train = data["y_train"].float().view(-1, 1)
                    X_test = data["X_test"].float()
                    y_test = data["y_test"].float().view(-1, 1)
                    
                    # Train the model
                    for epoch in range(10):  # 10 epochs
                        optimizer.zero_grad()
                        outputs = model(X_train)
                        loss = criterion(outputs, y_train)
                        loss.backward()
                        optimizer.step()
                    
                    # Evaluate the model
                    with torch.no_grad():
                        predictions = model(X_test)
                        predictions = (predictions > 0.5).float()  # Convert probabilities to binary predictions
                        accuracy = (predictions == y_test).float().mean()
                    
                    return f"Neural Network Evaluation:\nAccuracy: {accuracy.item():.4f}"
                    
            except Exception as e:
                return f"Error in ML execution: {str(e)}"
                
    except Exception as e:
        return f"Error in code execution: {str(e)}"

# Create Gradio interface with enhanced features
def create_interface():
    with gr.Blocks(title="Advanced LeetCode & ML Testing Platform") as iface:  
        # All components and event handlers must be defined within this 'with' block
        gr.Markdown("# Advanced LeetCode & ML Testing Platform")
        
        with gr.Tabs():
            with gr.Tab("Problem Solving"):
                problem_dropdown = gr.Dropdown(
                    choices=list(PROBLEM_DATA.keys()),
                    label="Select Problem"
                )
                difficulty_display = gr.Textbox(label="Difficulty")
                problem_type = gr.Textbox(label="Problem Type")
                description_text = gr.Textbox(label="Description", lines=5)
                code_input = gr.Textbox(label="Your Code", lines=10, value="")
                results_output = gr.Textbox(label="Test Results", value="", lines=10)

                with gr.Row():
                    run_button = gr.Button("Run Tests")
                    clear_button = gr.Button("Clear Code")
                    
                # Event handler for Run Tests button (inside Blocks context)
                run_button.click(
                    run_tests,
                    inputs=[problem_dropdown, code_input],
                    outputs=[results_output]
                )

                # Event handler for Clear Code button (inside Blocks context)
                clear_button.click(
                    lambda: "",
                    inputs=[],
                    outputs=[code_input]
                )

                # Event handler for problem selection (inside Blocks context)
                def update_problem_info(problem_name):
                    problem = PROBLEM_DATA[problem_name]
                    return (
                        problem["difficulty"],
                        problem["type"],
                        problem["description"],
                        problem["starter_code"],
                        ""  # Clear results
                    )

                problem_dropdown.change(
                    update_problem_info,
                    inputs=[problem_dropdown],
                    outputs=[
                        difficulty_display,
                        problem_type,
                        description_text,
                        code_input,
                        results_output
                    ]
                )
                
            with gr.Tab("Visualization"):
                with gr.Row():
                    plot_type = gr.Dropdown(
                        choices=["Learning Curve", "Confusion Matrix", "Feature Importance"],
                        label="Select Plot Type"
                    )
                    visualize_button = gr.Button("Generate Visualization")
                
                plot_output = gr.Plot(label="Visualization")

                # Event handler for visualization
                def generate_visualization(plot_type):
                    if plot_type == "Learning Curve":
                        # Example learning curve
                        plt.figure()
                        plt.plot([0, 1, 2, 3, 4], [0.8, 0.7, 0.6, 0.5, 0.4], label="Training Loss")
                        plt.plot([0, 1, 2, 3, 4], [0.9, 0.8, 0.7, 0.6, 0.5], label="Validation Loss")
                        plt.xlabel("Epochs")
                        plt.ylabel("Loss")
                        plt.title("Learning Curve")
                        plt.legend()
                        return plt
                    else:
                        return None

                visualize_button.click(
                    generate_visualization,
                    inputs=[plot_type],
                    outputs=[plot_output]
                )

    return iface


if __name__ == "__main__":
    iface = create_interface()
    iface.launch()