File size: 18,713 Bytes
ea2329d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import torch
import torchvision
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image
import torch.nn as nn
from pathlib import Path
import cv2
from torchvision import transforms
from efficientnet_pytorch import EfficientNet
import logging
import warnings
from sklearn.preprocessing import StandardScaler
from typing import Optional, Dict, Any, Tuple
import json
import os
from datetime import datetime
import albumentations as A
from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
import seaborn as sns
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
warnings.filterwarnings('ignore')
# Set up logging with more detailed configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('skin_diagnostic.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class ImageValidator:
"""Class for image validation and quality checking"""
@staticmethod
def validate_image(image: np.ndarray) -> Tuple[bool, str]:
"""
Validate image quality and characteristics
Returns: (is_valid, message)
"""
try:
# Check image dimensions
if image.shape[0] < 224 or image.shape[1] < 224:
return False, "Image resolution too low. Minimum 224x224 required."
# Check if image is too dark or too bright
brightness = np.mean(image)
if brightness < 30:
return False, "Image too dark. Please capture in better lighting."
if brightness > 240:
return False, "Image too bright. Please reduce exposure."
# Check for blur
laplacian_var = cv2.Laplacian(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), cv2.CV_64F).var()
if laplacian_var < 100:
return False, "Image is too blurry. Please provide a clearer image."
# Check for color consistency
color_std = np.std(image, axis=(0,1))
if np.mean(color_std) < 20:
return False, "Image lacks color variation. Please ensure proper lighting."
return True, "Image validation successful"
except Exception as e:
logger.error(f"Image validation error: {str(e)}")
return False, "Error during image validation"
class AdvancedImageAnalysis:
"""Class for sophisticated image analysis techniques"""
def __init__(self):
self.scaler = StandardScaler()
def analyze_lesion(self, image: np.ndarray) -> Dict[str, float]:
"""
Perform advanced analysis of skin lesion characteristics
"""
try:
# Convert to different color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
# Extract features
features = {
'asymmetry': self._calculate_asymmetry(image),
'border_irregularity': self._analyze_border(image),
'color_variation': self._analyze_color(hsv),
'diameter': self._estimate_diameter(image),
'texture': self._analyze_texture(lab),
'vascularity': self._analyze_vascularity(image),
}
return features
except Exception as e:
logger.error(f"Error in lesion analysis: {str(e)}")
return {}
def _calculate_asymmetry(self, image: np.ndarray) -> float:
"""Calculate asymmetry score of the lesion"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Find contours
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
# Get largest contour
largest_contour = max(contours, key=cv2.contourArea)
# Calculate moments
moments = cv2.moments(largest_contour)
if moments['m00'] == 0:
return 0.0
# Calculate center of mass
cx = moments['m10'] / moments['m00']
cy = moments['m01'] / moments['m00']
return float(cv2.matchShapes(largest_contour, cv2.flip(largest_contour, 1), 1, 0.0))
def _analyze_border(self, image: np.ndarray) -> float:
"""Analyze border irregularity"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
largest_contour = max(contours, key=cv2.contourArea)
perimeter = cv2.arcLength(largest_contour, True)
area = cv2.contourArea(largest_contour)
if area == 0:
return 0.0
circularity = 4 * np.pi * area / (perimeter * perimeter)
return 1 - circularity
def _analyze_color(self, hsv: np.ndarray) -> float:
"""Analyze color variation in the lesion"""
return float(np.std(hsv[:,:,0]))
def _estimate_diameter(self, image: np.ndarray) -> float:
"""Estimate lesion diameter"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0
largest_contour = max(contours, key=cv2.contourArea)
_, _, w, h = cv2.boundingRect(largest_contour)
return max(w, h)
def _analyze_texture(self, lab: np.ndarray) -> float:
"""Analyze texture patterns"""
gray = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
# Calculate GLCM features
glcm = cv2.calcHist([gray], [0], None, [16], [0,256])
glcm = glcm.flatten() / glcm.sum()
# Calculate entropy
entropy = -np.sum(glcm * np.log2(glcm + 1e-7))
return float(entropy)
def _analyze_vascularity(self, image: np.ndarray) -> float:
"""Analyze vascular patterns"""
# Extract red channel
red_channel = image[:,:,0]
return float(np.percentile(red_channel, 95) - np.percentile(red_channel, 5))
class SkinDiagnosticSystem:
def __init__(self, model_path: Optional[str] = None):
# Define classes and risk levels
self.classes = [
'Melanocytic nevi',
'Melanoma',
'Benign keratosis-like lesions',
'Basal cell carcinoma',
'Actinic keratoses',
'Vascular lesions',
'Dermatofibroma'
]
self.risk_levels = {
'Melanoma': 'High',
'Basal cell carcinoma': 'High',
'Actinic keratoses': 'Moderate',
'Vascular lesions': 'Low to Moderate',
'Benign keratosis-like lesions': 'Low',
'Melanocytic nevi': 'Low',
'Dermatofibroma': 'Low'
}
# Initialize components
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.image_validator = ImageValidator()
self.image_analyzer = AdvancedImageAnalysis()
# Load model
self.model = self._load_model(model_path)
self.transform = self._get_transforms()
# Load medical context
self.medical_context = self._load_medical_context()
def _load_model(self, model_path: Optional[str]) -> nn.Module:
"""Load model with checkpointing support"""
try:
model = EfficientNet.from_pretrained('efficientnet-b4')
num_ftrs = model._fc.in_features
model._fc = nn.Sequential(
nn.Linear(num_ftrs, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, len(self.classes))
)
if model_path and os.path.exists(model_path):
logger.info(f"Loading model checkpoint from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
model.load_state_dict(checkpoint['model_state_dict'])
logger.info(f"Model checkpoint loaded. Epoch: {checkpoint['epoch']}")
model = model.to(self.device)
model.eval()
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def _get_transforms(self) -> transforms.Compose:
"""Get image transformations"""
return transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def _load_medical_context(self) -> Dict[str, Any]:
"""Load medical context and warnings"""
return {
'Melanoma': {
'description': 'A serious form of skin cancer that begins in melanocytes.',
'warning': 'URGENT: Immediate medical attention required. This is a potentially serious condition.',
'risk_factors': [
'UV exposure',
'Fair skin',
'Family history',
'Multiple moles'
],
'follow_up': 'Immediate dermatologist consultation required'
},
'Basal cell carcinoma': {
'description': 'The most common type of skin cancer.',
'warning': 'Medical attention required. While typically slow-growing, treatment is necessary.',
'risk_factors': [
'Sun exposure',
'Fair skin',
'Age over 50',
'Prior radiation therapy'
],
'follow_up': 'Schedule dermatologist appointment within 1-2 weeks'
},
# Add entries for other conditions...
}
def save_checkpoint(self, epoch: int, optimizer: torch.optim.Optimizer, loss: float) -> None:
"""Save model checkpoint"""
checkpoint_dir = Path('checkpoints')
checkpoint_dir.mkdir(exist_ok=True)
checkpoint_path = checkpoint_dir / f'model_checkpoint_epoch_{epoch}.pth'
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, checkpoint_path)
logger.info(f"Checkpoint saved: {checkpoint_path}")
def analyze_image(self, image: np.ndarray) -> Dict[str, Any]:
"""Main analysis function with validation and advanced analysis"""
try:
# Validate image
is_valid, validation_message = self.image_validator.validate_image(image)
if not is_valid:
return {'error': validation_message}
# Convert to PIL Image
pil_image = Image.fromarray(image)
# Prepare image for model
img_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
# Get model predictions
with torch.no_grad():
outputs = self.model(img_tensor)
probs = torch.nn.functional.softmax(outputs, dim=1)
# Get predicted class and probability
pred_prob, pred_idx = torch.max(probs, 1)
condition = self.classes[pred_idx]
confidence = pred_prob.item() * 100
# Perform advanced image analysis
analysis_results = self.image_analyzer.analyze_lesion(image)
# Get medical context
medical_info = self.medical_context.get(condition, {})
# Prepare response
response = {
'condition': condition,
'confidence': confidence,
'risk_level': self.risk_levels.get(condition, 'Unknown'),
'analysis': analysis_results,
'medical_context': medical_info,
'warning': medical_info.get('warning', ''),
'timestamp': datetime.now().isoformat()
}
# Log analysis results
logger.info(f"Analysis completed for condition: {condition} (confidence: {confidence:.2f}%)")
return response
except Exception as e:
logger.error(f"Error in image analysis: {str(e)}")
return {'error': 'Analysis failed. Please try again.'}
def create_gradio_interface():
system = SkinDiagnosticSystem()
# Load translation models
translation_models = {
'hi': ('Helsinki-NLP/opus-mt-en-hi', MarianTokenizer, MarianMTModel),
'ta': ('Helsinki-NLP/opus-mt-en-ta', MarianTokenizer, MarianMTModel),
'te': ('Helsinki-NLP/opus-mt-en-te', MarianTokenizer, MarianMTModel),
'bn': ('Helsinki-NLP/opus-mt-en-bn', MarianTokenizer, MarianMTModel),
'mr': ('Helsinki-NLP/opus-mt-en-mr', MarianTokenizer, MarianMTModel),
'pa': ('Helsinki-NLP/opus-mt-en-pa', MarianTokenizer, MarianMTModel),
'gu': ('Helsinki-NLP/opus-mt-en-gu', MarianTokenizer, MarianMTModel),
'kn': ('Helsinki-NLP/opus-mt-en-kn', MarianTokenizer, MarianMTModel),
'ml': ('Helsinki-NLP/opus-mt-en-ml', MarianTokenizer, MarianMTModel),
}
def process_image(image, language, email=None):
result = system.analyze_image(image)
if 'error' in result:
return f"Error: {result['error']}"
# Format detailed output
output = "ANALYSIS RESULTS\n" + "="*50 + "\n\n"
# Condition and Risk Level
output += f"Detected Condition: {result['condition']}\n"
output += f"Confidence: {result['confidence']:.2f}%\n"
output += f"Risk Level: {result['risk_level']}\n\n"
# Warning (if any)
if result['warning']:
output += f"⚠️ WARNING ⚠️\n{result['warning']}\n\n"
# Detailed Analysis
output += "Detailed Analysis:\n" + "-"*20 + "\n"
for metric, value in result['analysis'].items():
output += f"{metric}: {value:.2f}\n"
# Medical Context
if 'medical_context' in result and result['medical_context']:
output += "\nMedical Context:\n" + "-"*20 + "\n"
context = result['medical_context']
output += f"Description: {context.get('description', 'N/A')}\n"
if 'risk_factors' in context:
output += "\nRisk Factors:\n"
for factor in context['risk_factors']:
output += f"- {factor}\n"
if 'follow_up' in context:
output += f"\nRecommended Follow-up:\n{context['follow_up']}\n"
# Timestamp
output += f"\nAnalysis Timestamp: {result['timestamp']}\n"
# Disclaimer
output += "\n" + "="*50 + "\n"
output += "DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice. Please consult a qualified healthcare provider for proper diagnosis and treatment."
# Translate output to the selected language
if language != 'en':
model_name, tokenizer_class, model_class = translation_models[language]
tokenizer = tokenizer_class.from_pretrained(model_name)
model = model_class.from_pretrained(model_name)
inputs = tokenizer(output, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
translated_output = tokenizer.decode(translated[0], skip_special_tokens=True)
else:
translated_output = output
# Send email if provided
if email:
send_email(email, translated_output)
return translated_output
def send_email(to_email, message):
from_email = "your_email@example.com"
password = "your_password"
msg = MIMEMultipart()
msg['From'] = from_email
msg['To'] = to_email
msg['Subject'] = "Skin Lesion Analysis Results"
msg.attach(MIMEText(message, 'plain'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login(from_email, password)
server.sendmail(from_email, to_email, msg.as_string())
server.quit()
# Create enhanced Gradio interface with additional features
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="numpy", label="Upload Skin Image"),
gr.Dropdown(choices=["en", "hi", "ta", "te", "bn", "mr", "pa", "gu", "kn", "ml"], label="Select Language"),
gr.Textbox(label="Email (optional)", placeholder="Enter your email to receive results")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Advanced Skin Lesion Analysis System",
description="""
This system analyzes skin lesions using advanced computer vision and deep learning techniques.
Key Features:
- Lesion classification based on the HAM10000 dataset
- Advanced image quality validation
- Detailed analysis of lesion characteristics
- Medical context and risk assessment
- Option to receive results via email
Important: This tool is for educational purposes only and should not replace professional medical diagnosis.
""",
examples=[
["example_melanoma.jpg", "en", ""],
["example_nevus.jpg", "hi", ""],
["example_bcc.jpg", "ta", ""]
],
analytics_enabled=False,
)
return iface
iface = create_gradio_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
) |