File size: 7,574 Bytes
865f99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import os 
from skimage import io, transform 
import torch 
import torchvision 
from torch.autograd import Variable 
import torch.nn as nn 
import torch.nn.functional as F 
from torch.utils.data import Dataset, DataLoader 
from torchvision import transforms 

import numpy as np 
from PIL import Image 
import glob 


def normPRED(d):
	ma = torch.max(d)
	mi = torch.min(d)

	dn = (d - mi)/(ma - mi)

	return dn 

def save_output(image_name, pred, d_dir):

	predict = pred 
	predict = predict.squeeze()
	predict_np = predict.cpu().data.numpy()

	im = Image.fromarray(predict_np * 255).convert('RGB')
	img_name = image_name.split(os.sep)[-1]

	image = io.imread(image_name)
	imo = im.resize((image.shape[1], image.shape[0]), resample = Image.BILINEAR)

	pb_np = np.array(imo)

	aaa = img_name.split(".")
	bbb = aaa[0:-1]
	imidx = bbb[0]

	for i in range(1, len(bbb)):
		imidx = imidx + "." + bbb[i]

	imo.save(d_dir + "/" + imidx + '.png')



#image_dir = "./test_data/"
#prediction_dir = './outputs_pred/'

#model_dir = 'quant_model_u2net.pth'#'u2net.pth'

#img_name_list = glob.glob(image_dir + "/*")

#print("Number of images : ", len(img_name_list))


### Make test dataset 

class RescaleT(object):

	def __init__(self,output_size):
		assert isinstance(output_size,(int,tuple))
		self.output_size = output_size

	def __call__(self,sample):
		imidx, image, label = sample['imidx'], sample['image'],sample['label']

		h, w = image.shape[:2]

		if isinstance(self.output_size,int):
			if h > w:
				new_h, new_w = self.output_size*h/w,self.output_size
			else:
				new_h, new_w = self.output_size,self.output_size*w/h
		else:
			new_h, new_w = self.output_size

		new_h, new_w = int(new_h), int(new_w)

		# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
		# img = transform.resize(image,(new_h,new_w),mode='constant')
		# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)

		img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
		lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)

		return {'imidx':imidx, 'image':img,'label':lbl}

class ToTensorLab(object):
	"""Convert ndarrays in sample to Tensors."""
	def __init__(self,flag=0):
		self.flag = flag

	def __call__(self, sample):

		imidx, image, label =sample['imidx'], sample['image'], sample['label']

		tmpLbl = np.zeros(label.shape)

		if(np.max(label)<1e-6):
			label = label
		else:
			label = label/np.max(label)

		# change the color space
		if self.flag == 2: # with rgb and Lab colors
			tmpImg = np.zeros((image.shape[0],image.shape[1],6))
			tmpImgt = np.zeros((image.shape[0],image.shape[1],3))
			if image.shape[2]==1:
				tmpImgt[:,:,0] = image[:,:,0]
				tmpImgt[:,:,1] = image[:,:,0]
				tmpImgt[:,:,2] = image[:,:,0]
			else:
				tmpImgt = image
			tmpImgtl = color.rgb2lab(tmpImgt)

			# nomalize image to range [0,1]
			tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0]))
			tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1]))
			tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2]))
			tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0]))
			tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1]))
			tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2]))

			# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
			tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3])
			tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4])
			tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5])

		elif self.flag == 1: #with Lab color
			tmpImg = np.zeros((image.shape[0],image.shape[1],3))

			if image.shape[2]==1:
				tmpImg[:,:,0] = image[:,:,0]
				tmpImg[:,:,1] = image[:,:,0]
				tmpImg[:,:,2] = image[:,:,0]
			else:
				tmpImg = image

			tmpImg = color.rgb2lab(tmpImg)

			# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0]))
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1]))
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2]))

			tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
			tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
			tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])

		else: # with rgb color
			tmpImg = np.zeros((image.shape[0],image.shape[1],3))
			image = image/np.max(image)
			if image.shape[2]==1:
				tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
			else:
				tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
				tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
				tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225

		tmpLbl[:,:,0] = label[:,:,0]


		tmpImg = tmpImg.transpose((2, 0, 1))
		tmpLbl = label.transpose((2, 0, 1))

		return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}

class TestData(Dataset):

	def __init__(self, img_name_list, lbl_name_list, transform = None):

		self.img_list = img_name_list
		self.label_name_list = lbl_name_list
		self.transform = transform

	def __len__(self):

		return len(self.img_list) 

	def __getitem__(self, idx):

		#image = io.imread(self.img_list[idx])
		image = self.img_list[idx]
		imname = self.img_list[idx]
		imidx = np.array([idx])

		if (0 == len(self.label_name_list)):
			label_3 = np.zeros(image.shape)

		else:
			label_3 = io.imread(self.label_name_list[idx])

		label = np.zeros(label_3.shape[0:2])

		if(3==len(label_3.shape)):
			label = label_3[:,:,0]
		elif(2==len(label_3.shape)):
			label = label_3

		if(3==len(image.shape) and 2==len(label.shape)):
			label = label[:,:,np.newaxis]
		elif(2==len(image.shape) and 2==len(label.shape)):
			image = image[:,:,np.newaxis]
			label = label[:,:,np.newaxis]

		sample = {'imidx':imidx, 'image':image, 'label':label}

		if self.transform:
			sample = self.transform(sample)

		return sample



#test_dataset = TestData(img_name_list = img_name_list, lbl_name_list = [], 
#						transform = transforms.Compose([RescaleT(512), ToTensorLab(flag = 0)]))


### Make test dataloader 


#test_dataloader = DataLoader(test_dataset, batch_size = 1, shuffle = False, num_workers = 1)


#net = U2Net(3,1)

#net = torch.jit.load('quant_model_u2net.pth')
#net.load_state_dict(torch.load(model_dir))


"""net.eval()


for i_test, data_test in enumerate(test_dataloader):

	print("Inferencing : ", img_name_list[i_test].split(os.sep)[-1])

	inputs_test = data_test['image']


	inputs_test = inputs_test.type(torch.FloatTensor)

	inputs_test = Variable(inputs_test)

	d1, d2, d3, d4, d5, d6, d7 = net(inputs_test)

	pred = 1.0 - d1[:,0,:,:]
	pred = normPRED(pred)

	#save_output(img_name_list[i_test], pred, prediction_dir)

	#del d1, d2, d3, d4, d5, d6, d7"""