Spaces:
Build error
Build error
File size: 1,436 Bytes
05355ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import torch.nn as nn
import torch.nn.functional as F
def ConvBlock(in_channels, out_channels, pool=False):
layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)]
if pool:
layers.append(nn.MaxPool2d(4))
return nn.Sequential(*layers)
# Model Architecture
class ResNet9(nn.Module):
def __init__(self, in_channels, num_diseases):
super().__init__()
self.conv1 = ConvBlock(in_channels, 64)
self.conv2 = ConvBlock(64, 128, pool=True) # out_dim : 128 x 64 x 64
self.res1 = nn.Sequential(ConvBlock(128, 128), ConvBlock(128, 128))
self.conv3 = ConvBlock(128, 256, pool=True) # out_dim : 256 x 16 x 16
self.conv4 = ConvBlock(256, 512, pool=True) # out_dim : 512 x 4 x 44
self.res2 = nn.Sequential(ConvBlock(512, 512), ConvBlock(512, 512))
self.classifier = nn.Sequential(nn.MaxPool2d(4),
nn.Flatten(),
nn.Linear(512, num_diseases))
def forward(self, xb): # xb is the loaded batch
out = self.conv1(xb)
out = self.conv2(out)
out = self.res1(out) + out
out = self.conv3(out)
out = self.conv4(out)
out = self.res2(out) + out
out = self.classifier(out)
return out |