File size: 3,919 Bytes
f50b5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b44c9
f50b5cb
f9b44c9
f50b5cb
 
f9b44c9
 
f50b5cb
f9b44c9
 
 
 
f50b5cb
 
f9b44c9
f50b5cb
 
f9b44c9
 
 
f50b5cb
f9b44c9
 
f50b5cb
 
f9b44c9
 
 
f50b5cb
f9b44c9
f50b5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd2cd0
93ce395
 
 
 
 
 
 
 
f50b5cb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
import os
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.messages import HumanMessage, SystemMessage

# Set environment variables for Hugging Face token
hf = os.getenv('HF_TOKEN')
os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf
os.environ['HF_TOKEN'] = hf

# Page config
st.set_page_config(page_title="Deep Learning Mentor Chat", layout="centered")

# Custom CSS for modern chat UI
st.markdown("""
    <style>
    .main {
        background: linear-gradient(135deg, #430089 0%, #82ffa1 100%);
        padding: 2rem;
        font-family: 'Segoe UI', sans-serif;
    }
    .stButton>button {
        background: #ffffff10;
        border: 2px solid #ffffff50;
        color: white;
        font-size: 18px;
        font-weight: 600;
        padding: 0.8em 1.2em;
        border-radius: 12px;
        width: 100%;
        transition: 0.3s ease;
        box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
    }
    .stButton>button:hover {
        background: #ffffff30;
        border-color: #fff;
        color: #ffffff;
    }
    h1, h3, p, label {
        color: #ffffff;
        text-align: center;
    }
    hr {
        border: 1px solid #ffffff50;
        margin: 2em 0;
    }
    .css-1aumxhk {
        color: white;
    }
    </style>
""", unsafe_allow_html=True)
# App title
st.markdown("<h1>πŸ€– Deep Learning Mentor Chat</h1>", unsafe_allow_html=True)
st.markdown("<p>Learn Deep Learning with personalized AI mentorship</p>", unsafe_allow_html=True)

# Sidebar for experience level
st.sidebar.title("πŸŽ“ Select Your Level")
exp = st.sidebar.selectbox("Experience Level", ["Beginner", "Intermediate", "Expert"])

# Load Deep Learning model
mentor_llm = HuggingFaceEndpoint(
    repo_id='Qwen/Qwen3-32B',
    provider='sambanova',
    temperature=0.7,
    max_new_tokens=150,
    task='conversational'
)

deep_mentor = ChatHuggingFace(llm=mentor_llm)

# Session key for conversation
PAGE_KEY = "deep_learning_chat_history"
if PAGE_KEY not in st.session_state:
    st.session_state[PAGE_KEY] = []

# Chat input form
st.markdown("<hr>", unsafe_allow_html=True)
with st.form(key="chat_form"):
    user_input = st.text_input("πŸ’¬ Ask your deep learning question:")
    submit = st.form_submit_button("Send")

# Handle chat submission
if submit and user_input:
    system_prompt = f"""You are a knowledgeable Deep Learning mentor with {exp} years of practical experience. Your communication style is friendly, supportive, and focused. Please adhere to the following strict instructions:

    1. Only respond to queries that are specifically about deep learning programming β€” this includes related libraries, tools, and frameworks.
    2. If a question is outside the scope of deep learning, respond exactly with: "I specialize only in deep learning programming. This appears to be a non-deep learning topic."
    3. Do not offer help or advice on non-deep learning subjects.
    4. Aim for clarity and practical relevance in your explanations, keeping them beginner-friendly when needed.
    5. Reinforce learning through relevant code snippets and applied examples.
    6. For more advanced discussions, assume the learner has a working knowledge of deep learning fundamentals."""

    messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)]
    result = deep_mentor.invoke(messages)
    st.session_state[PAGE_KEY].append((user_input, result.content))

# Chat history display with bubble styling
if st.session_state[PAGE_KEY]:
    st.markdown('<div class="chat-container">', unsafe_allow_html=True)
    for user, bot in st.session_state[PAGE_KEY]:
        st.markdown(f'<div class="chat-user">πŸ‘€ <strong>You:</strong> {user}</div>', unsafe_allow_html=True)
        st.markdown(f'<div class="chat-bot">πŸ§‘β€πŸ« <strong>Mentor:</strong> {bot}</div>', unsafe_allow_html=True)
    st.markdown('</div>', unsafe_allow_html=True)