File size: 15,915 Bytes
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import split_feature, merge_splits


def single_head_full_attention(q, k, v):
    # q, k, v: [B, L, C]
    assert q.dim() == k.dim() == v.dim() == 3

    scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5)  # [B, L, L]
    attn = torch.softmax(scores, dim=2)  # [B, L, L]
    out = torch.matmul(attn, v)  # [B, L, C]

    return out


def generate_shift_window_attn_mask(input_resolution, window_size_h, window_size_w,

                                    shift_size_h, shift_size_w, device=torch.device('cuda')):
    # Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
    # calculate attention mask for SW-MSA
    h, w = input_resolution
    img_mask = torch.zeros((1, h, w, 1)).to(device)  # 1 H W 1
    h_slices = (slice(0, -window_size_h),
                slice(-window_size_h, -shift_size_h),
                slice(-shift_size_h, None))
    w_slices = (slice(0, -window_size_w),
                slice(-window_size_w, -shift_size_w),
                slice(-shift_size_w, None))
    cnt = 0
    for h in h_slices:
        for w in w_slices:
            img_mask[:, h, w, :] = cnt
            cnt += 1

    mask_windows = split_feature(img_mask, num_splits=input_resolution[-1] // window_size_w, channel_last=True)

    mask_windows = mask_windows.view(-1, window_size_h * window_size_w)
    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

    return attn_mask


def single_head_split_window_attention(q, k, v,

                                       num_splits=1,

                                       with_shift=False,

                                       h=None,

                                       w=None,

                                       attn_mask=None,

                                       ):
    # Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
    # q, k, v: [B, L, C]
    assert q.dim() == k.dim() == v.dim() == 3

    assert h is not None and w is not None
    assert q.size(1) == h * w

    b, _, c = q.size()

    b_new = b * num_splits * num_splits

    window_size_h = h // num_splits
    window_size_w = w // num_splits

    q = q.view(b, h, w, c)  # [B, H, W, C]
    k = k.view(b, h, w, c)
    v = v.view(b, h, w, c)

    scale_factor = c ** 0.5

    if with_shift:
        assert attn_mask is not None  # compute once
        shift_size_h = window_size_h // 2
        shift_size_w = window_size_w // 2

        q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
        k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
        v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))

    q = split_feature(q, num_splits=num_splits, channel_last=True)  # [B*K*K, H/K, W/K, C]
    k = split_feature(k, num_splits=num_splits, channel_last=True)
    v = split_feature(v, num_splits=num_splits, channel_last=True)

    scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
                          ) / scale_factor  # [B*K*K, H/K*W/K, H/K*W/K]

    if with_shift:
        scores += attn_mask.repeat(b, 1, 1)

    attn = torch.softmax(scores, dim=-1)

    out = torch.matmul(attn, v.view(b_new, -1, c))  # [B*K*K, H/K*W/K, C]

    out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c),
                       num_splits=num_splits, channel_last=True)  # [B, H, W, C]

    # shift back
    if with_shift:
        out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2))

    out = out.view(b, -1, c)

    return out


class TransformerLayer(nn.Module):
    def __init__(self,

                 d_model=256,

                 nhead=1,

                 attention_type='swin',

                 no_ffn=False,

                 ffn_dim_expansion=4,

                 with_shift=False,

                 **kwargs,

                 ):
        super(TransformerLayer, self).__init__()

        self.dim = d_model
        self.nhead = nhead
        self.attention_type = attention_type
        self.no_ffn = no_ffn

        self.with_shift = with_shift

        # multi-head attention
        self.q_proj = nn.Linear(d_model, d_model, bias=False)
        self.k_proj = nn.Linear(d_model, d_model, bias=False)
        self.v_proj = nn.Linear(d_model, d_model, bias=False)

        self.merge = nn.Linear(d_model, d_model, bias=False)

        self.norm1 = nn.LayerNorm(d_model)

        # no ffn after self-attn, with ffn after cross-attn
        if not self.no_ffn:
            in_channels = d_model * 2
            self.mlp = nn.Sequential(
                nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False),
                nn.GELU(),
                nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False),
            )

            self.norm2 = nn.LayerNorm(d_model)

    def forward(self, source, target,

                height=None,

                width=None,

                shifted_window_attn_mask=None,

                attn_num_splits=None,

                **kwargs,

                ):
        # source, target: [B, L, C]
        query, key, value = source, target, target

        # single-head attention
        query = self.q_proj(query)  # [B, L, C]
        key = self.k_proj(key)  # [B, L, C]
        value = self.v_proj(value)  # [B, L, C]

        if self.attention_type == 'swin' and attn_num_splits > 1:
            if self.nhead > 1:
                # we observe that multihead attention slows down the speed and increases the memory consumption
                # without bringing obvious performance gains and thus the implementation is removed
                raise NotImplementedError
            else:
                message = single_head_split_window_attention(query, key, value,
                                                             num_splits=attn_num_splits,
                                                             with_shift=self.with_shift,
                                                             h=height,
                                                             w=width,
                                                             attn_mask=shifted_window_attn_mask,
                                                             )
        else:
            message = single_head_full_attention(query, key, value)  # [B, L, C]

        message = self.merge(message)  # [B, L, C]
        message = self.norm1(message)

        if not self.no_ffn:
            message = self.mlp(torch.cat([source, message], dim=-1))
            message = self.norm2(message)

        return source + message


class TransformerBlock(nn.Module):
    """self attention + cross attention + FFN"""

    def __init__(self,

                 d_model=256,

                 nhead=1,

                 attention_type='swin',

                 ffn_dim_expansion=4,

                 with_shift=False,

                 **kwargs,

                 ):
        super(TransformerBlock, self).__init__()

        self.self_attn = TransformerLayer(d_model=d_model,
                                          nhead=nhead,
                                          attention_type=attention_type,
                                          no_ffn=True,
                                          ffn_dim_expansion=ffn_dim_expansion,
                                          with_shift=with_shift,
                                          )

        self.cross_attn_ffn = TransformerLayer(d_model=d_model,
                                               nhead=nhead,
                                               attention_type=attention_type,
                                               ffn_dim_expansion=ffn_dim_expansion,
                                               with_shift=with_shift,
                                               )

    def forward(self, source, target,

                height=None,

                width=None,

                shifted_window_attn_mask=None,

                attn_num_splits=None,

                **kwargs,

                ):
        # source, target: [B, L, C]

        # self attention
        source = self.self_attn(source, source,
                                height=height,
                                width=width,
                                shifted_window_attn_mask=shifted_window_attn_mask,
                                attn_num_splits=attn_num_splits,
                                )

        # cross attention and ffn
        source = self.cross_attn_ffn(source, target,
                                     height=height,
                                     width=width,
                                     shifted_window_attn_mask=shifted_window_attn_mask,
                                     attn_num_splits=attn_num_splits,
                                     )

        return source


class FeatureTransformer(nn.Module):
    def __init__(self,

                 num_layers=6,

                 d_model=128,

                 nhead=1,

                 attention_type='swin',

                 ffn_dim_expansion=4,

                 **kwargs,

                 ):
        super(FeatureTransformer, self).__init__()

        self.attention_type = attention_type

        self.d_model = d_model
        self.nhead = nhead

        self.layers = nn.ModuleList([
            TransformerBlock(d_model=d_model,
                             nhead=nhead,
                             attention_type=attention_type,
                             ffn_dim_expansion=ffn_dim_expansion,
                             with_shift=True if attention_type == 'swin' and i % 2 == 1 else False,
                             )
            for i in range(num_layers)])

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, feature0, feature1,

                attn_num_splits=None,

                **kwargs,

                ):

        b, c, h, w = feature0.shape
        assert self.d_model == c

        feature0 = feature0.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
        feature1 = feature1.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]

        if self.attention_type == 'swin' and attn_num_splits > 1:
            # global and refine use different number of splits
            window_size_h = h // attn_num_splits
            window_size_w = w // attn_num_splits

            # compute attn mask once
            shifted_window_attn_mask = generate_shift_window_attn_mask(
                input_resolution=(h, w),
                window_size_h=window_size_h,
                window_size_w=window_size_w,
                shift_size_h=window_size_h // 2,
                shift_size_w=window_size_w // 2,
                device=feature0.device,
            )  # [K*K, H/K*W/K, H/K*W/K]
        else:
            shifted_window_attn_mask = None

        # concat feature0 and feature1 in batch dimension to compute in parallel
        concat0 = torch.cat((feature0, feature1), dim=0)  # [2B, H*W, C]
        concat1 = torch.cat((feature1, feature0), dim=0)  # [2B, H*W, C]

        for layer in self.layers:
            concat0 = layer(concat0, concat1,
                            height=h,
                            width=w,
                            shifted_window_attn_mask=shifted_window_attn_mask,
                            attn_num_splits=attn_num_splits,
                            )

            # update feature1
            concat1 = torch.cat(concat0.chunk(chunks=2, dim=0)[::-1], dim=0)

        feature0, feature1 = concat0.chunk(chunks=2, dim=0)  # [B, H*W, C]

        # reshape back
        feature0 = feature0.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()  # [B, C, H, W]
        feature1 = feature1.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()  # [B, C, H, W]

        return feature0, feature1


class FeatureFlowAttention(nn.Module):
    """

    flow propagation with self-attention on feature

    query: feature0, key: feature0, value: flow

    """

    def __init__(self, in_channels,

                 **kwargs,

                 ):
        super(FeatureFlowAttention, self).__init__()

        self.q_proj = nn.Linear(in_channels, in_channels)
        self.k_proj = nn.Linear(in_channels, in_channels)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, feature0, flow,

                local_window_attn=False,

                local_window_radius=1,

                **kwargs,

                ):
        # q, k: feature [B, C, H, W], v: flow [B, 2, H, W]
        if local_window_attn:
            return self.forward_local_window_attn(feature0, flow,
                                                  local_window_radius=local_window_radius)

        b, c, h, w = feature0.size()

        query = feature0.view(b, c, h * w).permute(0, 2, 1)  # [B, H*W, C]

        # a note: the ``correct'' implementation should be:
        # ``query = self.q_proj(query), key = self.k_proj(query)''
        # this problem is observed while cleaning up the code
        # however, this doesn't affect the performance since the projection is a linear operation,
        # thus the two projection matrices for key can be merged
        # so I just leave it as is in order to not re-train all models :)
        query = self.q_proj(query)  # [B, H*W, C]
        key = self.k_proj(query)  # [B, H*W, C]

        value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1)  # [B, H*W, 2]

        scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5)  # [B, H*W, H*W]
        prob = torch.softmax(scores, dim=-1)

        out = torch.matmul(prob, value)  # [B, H*W, 2]
        out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2)  # [B, 2, H, W]

        return out

    def forward_local_window_attn(self, feature0, flow,

                                  local_window_radius=1,

                                  ):
        assert flow.size(1) == 2
        assert local_window_radius > 0

        b, c, h, w = feature0.size()

        feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1)
                                       ).reshape(b * h * w, 1, c)  # [B*H*W, 1, C]

        kernel_size = 2 * local_window_radius + 1

        feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w)

        feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size,
                                   padding=local_window_radius)  # [B, C*(2R+1)^2), H*W]

        feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute(
            0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2)  # [B*H*W, C, (2R+1)^2]

        flow_window = F.unfold(flow, kernel_size=kernel_size,
                               padding=local_window_radius)  # [B, 2*(2R+1)^2), H*W]

        flow_window = flow_window.view(b, 2, kernel_size ** 2, h, w).permute(
            0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, 2)  # [B*H*W, (2R+1)^2, 2]

        scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5)  # [B*H*W, 1, (2R+1)^2]

        prob = torch.softmax(scores, dim=-1)

        out = torch.matmul(prob, flow_window).view(b, h, w, 2).permute(0, 3, 1, 2).contiguous()  # [B, 2, H, W]

        return out