File size: 11,804 Bytes
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# modified from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py  # noqa:E501

# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
# NVIDIA Source Code License for StyleGAN2 with Adaptive Discriminator
# Augmentation (ADA)
# =======================================================================

# 1. Definitions

# "Licensor" means any person or entity that distributes its Work.

# "Software" means the original work of authorship made available under
# this License.

# "Work" means the Software and any additions to or derivative works of
# the Software that are made available under this License.

# The terms "reproduce," "reproduction," "derivative works," and
# "distribution" have the meaning as provided under U.S. copyright law;
# provided, however, that for the purposes of this License, derivative
# works shall not include works that remain separable from, or merely
# link (or bind by name) to the interfaces of, the Work.

# Works, including the Software, are "made available" under this License
# by including in or with the Work either (a) a copyright notice
# referencing the applicability of this License to the Work, or (b) a
# copy of this License.

# 2. License Grants

#     2.1 Copyright Grant. Subject to the terms and conditions of this
#     License, each Licensor grants to you a perpetual, worldwide,
#     non-exclusive, royalty-free, copyright license to reproduce,
#     prepare derivative works of, publicly display, publicly perform,
#     sublicense and distribute its Work and any resulting derivative
#     works in any form.

# 3. Limitations

#     3.1 Redistribution. You may reproduce or distribute the Work only
#     if (a) you do so under this License, (b) you include a complete
#     copy of this License with your distribution, and (c) you retain
#     without modification any copyright, patent, trademark, or
#     attribution notices that are present in the Work.

#     3.2 Derivative Works. You may specify that additional or different
#     terms apply to the use, reproduction, and distribution of your
#     derivative works of the Work ("Your Terms") only if (a) Your Terms
#     provide that the use limitation in Section 3.3 applies to your
#     derivative works, and (b) you identify the specific derivative
#     works that are subject to Your Terms. Notwithstanding Your Terms,
#     this License (including the redistribution requirements in Section
#     3.1) will continue to apply to the Work itself.

#     3.3 Use Limitation. The Work and any derivative works thereof only
#     may be used or intended for use non-commercially. Notwithstanding
#     the foregoing, NVIDIA and its affiliates may use the Work and any
#     derivative works commercially. As used herein, "non-commercially"
#     means for research or evaluation purposes only.

#     3.4 Patent Claims. If you bring or threaten to bring a patent claim
#     against any Licensor (including any claim, cross-claim or
#     counterclaim in a lawsuit) to enforce any patents that you allege
#     are infringed by any Work, then your rights under this License from
#     such Licensor (including the grant in Section 2.1) will terminate
#     immediately.

#     3.5 Trademarks. This License does not grant any rights to use any
#     Licensor’s or its affiliates’ names, logos, or trademarks, except
#     as necessary to reproduce the notices described in this License.

#     3.6 Termination. If you violate any term of this License, then your
#     rights under this License (including the grant in Section 2.1) will
#     terminate immediately.

# 4. Disclaimer of Warranty.

# THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
# NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
# THIS LICENSE.

# 5. Limitation of Liability.

# EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
# THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
# SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
# INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
# OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
# (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
# LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
# COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGES.

# =======================================================================

import torch
from torch.autograd import Function
from torch.nn import functional as F

from annotator.uniformer.mmcv.utils import to_2tuple
from ..utils import ext_loader

upfirdn2d_ext = ext_loader.load_ext('_ext', ['upfirdn2d'])


class UpFirDn2dBackward(Function):

    @staticmethod
    def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
                in_size, out_size):

        up_x, up_y = up
        down_x, down_y = down
        g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad

        grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)

        grad_input = upfirdn2d_ext.upfirdn2d(
            grad_output,
            grad_kernel,
            up_x=down_x,
            up_y=down_y,
            down_x=up_x,
            down_y=up_y,
            pad_x0=g_pad_x0,
            pad_x1=g_pad_x1,
            pad_y0=g_pad_y0,
            pad_y1=g_pad_y1)
        grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
                                     in_size[3])

        ctx.save_for_backward(kernel)

        pad_x0, pad_x1, pad_y0, pad_y1 = pad

        ctx.up_x = up_x
        ctx.up_y = up_y
        ctx.down_x = down_x
        ctx.down_y = down_y
        ctx.pad_x0 = pad_x0
        ctx.pad_x1 = pad_x1
        ctx.pad_y0 = pad_y0
        ctx.pad_y1 = pad_y1
        ctx.in_size = in_size
        ctx.out_size = out_size

        return grad_input

    @staticmethod
    def backward(ctx, gradgrad_input):
        kernel, = ctx.saved_tensors

        gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2],
                                                ctx.in_size[3], 1)

        gradgrad_out = upfirdn2d_ext.upfirdn2d(
            gradgrad_input,
            kernel,
            up_x=ctx.up_x,
            up_y=ctx.up_y,
            down_x=ctx.down_x,
            down_y=ctx.down_y,
            pad_x0=ctx.pad_x0,
            pad_x1=ctx.pad_x1,
            pad_y0=ctx.pad_y0,
            pad_y1=ctx.pad_y1)
        # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0],
        #                                  ctx.out_size[1], ctx.in_size[3])
        gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
                                         ctx.out_size[0], ctx.out_size[1])

        return gradgrad_out, None, None, None, None, None, None, None, None


class UpFirDn2d(Function):

    @staticmethod
    def forward(ctx, input, kernel, up, down, pad):
        up_x, up_y = up
        down_x, down_y = down
        pad_x0, pad_x1, pad_y0, pad_y1 = pad

        kernel_h, kernel_w = kernel.shape
        batch, channel, in_h, in_w = input.shape
        ctx.in_size = input.shape

        input = input.reshape(-1, in_h, in_w, 1)

        ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))

        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
        ctx.out_size = (out_h, out_w)

        ctx.up = (up_x, up_y)
        ctx.down = (down_x, down_y)
        ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)

        g_pad_x0 = kernel_w - pad_x0 - 1
        g_pad_y0 = kernel_h - pad_y0 - 1
        g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
        g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1

        ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)

        out = upfirdn2d_ext.upfirdn2d(
            input,
            kernel,
            up_x=up_x,
            up_y=up_y,
            down_x=down_x,
            down_y=down_y,
            pad_x0=pad_x0,
            pad_x1=pad_x1,
            pad_y0=pad_y0,
            pad_y1=pad_y1)
        # out = out.view(major, out_h, out_w, minor)
        out = out.view(-1, channel, out_h, out_w)

        return out

    @staticmethod
    def backward(ctx, grad_output):
        kernel, grad_kernel = ctx.saved_tensors

        grad_input = UpFirDn2dBackward.apply(
            grad_output,
            kernel,
            grad_kernel,
            ctx.up,
            ctx.down,
            ctx.pad,
            ctx.g_pad,
            ctx.in_size,
            ctx.out_size,
        )

        return grad_input, None, None, None, None


def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    """UpFRIDn for 2d features.

    UpFIRDn is short for upsample, apply FIR filter and downsample. More
    details can be found in:
    https://www.mathworks.com/help/signal/ref/upfirdn.html

    Args:
        input (Tensor): Tensor with shape of (n, c, h, w).
        kernel (Tensor): Filter kernel.
        up (int | tuple[int], optional): Upsampling factor. If given a number,
            we will use this factor for the both height and width side.
            Defaults to 1.
        down (int | tuple[int], optional): Downsampling factor. If given a
            number, we will use this factor for the both height and width side.
            Defaults to 1.
        pad (tuple[int], optional): Padding for tensors, (x_pad, y_pad) or
            (x_pad_0, x_pad_1, y_pad_0, y_pad_1). Defaults to (0, 0).

    Returns:
        Tensor: Tensor after UpFIRDn.
    """
    if input.device.type == 'cpu':
        if len(pad) == 2:
            pad = (pad[0], pad[1], pad[0], pad[1])

        up = to_2tuple(up)

        down = to_2tuple(down)

        out = upfirdn2d_native(input, kernel, up[0], up[1], down[0], down[1],
                               pad[0], pad[1], pad[2], pad[3])
    else:
        _up = to_2tuple(up)

        _down = to_2tuple(down)

        if len(pad) == 4:
            _pad = pad
        elif len(pad) == 2:
            _pad = (pad[0], pad[1], pad[0], pad[1])

        out = UpFirDn2d.apply(input, kernel, _up, _down, _pad)

    return out


def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1,
                     pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(
        out,
        [0, 0,
         max(pad_x0, 0),
         max(pad_x1, 0),
         max(pad_y0, 0),
         max(pad_y1, 0)])
    out = out[:,
              max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0),
              max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape(
        [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)