Spaces:
Running
on
A10G
Running
on
A10G
File size: 26,752 Bytes
251e479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import argparse
import numpy as np
import os
from data import build_train_dataset
from gmflow.gmflow import GMFlow
from loss import flow_loss_func
from evaluate import (validate_chairs, validate_things, validate_sintel, validate_kitti,
create_sintel_submission, create_kitti_submission, inference_on_dir)
from utils.logger import Logger
from utils import misc
from utils.dist_utils import get_dist_info, init_dist, setup_for_distributed
def get_args_parser():
parser = argparse.ArgumentParser()
# dataset
parser.add_argument('--checkpoint_dir', default='tmp', type=str,
help='where to save the training log and models')
parser.add_argument('--stage', default='chairs', type=str,
help='training stage')
parser.add_argument('--image_size', default=[384, 512], type=int, nargs='+',
help='image size for training')
parser.add_argument('--padding_factor', default=16, type=int,
help='the input should be divisible by padding_factor, otherwise do padding')
parser.add_argument('--max_flow', default=400, type=int,
help='exclude very large motions during training')
parser.add_argument('--val_dataset', default=['chairs'], type=str, nargs='+',
help='validation dataset')
parser.add_argument('--with_speed_metric', action='store_true',
help='with speed metric when evaluation')
# training
parser.add_argument('--lr', default=4e-4, type=float)
parser.add_argument('--batch_size', default=12, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--grad_clip', default=1.0, type=float)
parser.add_argument('--num_steps', default=100000, type=int)
parser.add_argument('--seed', default=326, type=int)
parser.add_argument('--summary_freq', default=100, type=int)
parser.add_argument('--val_freq', default=10000, type=int)
parser.add_argument('--save_ckpt_freq', default=10000, type=int)
parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int)
# resume pretrained model or resume training
parser.add_argument('--resume', default=None, type=str,
help='resume from pretrain model for finetuing or resume from terminated training')
parser.add_argument('--strict_resume', action='store_true')
parser.add_argument('--no_resume_optimizer', action='store_true')
# GMFlow model
parser.add_argument('--num_scales', default=1, type=int,
help='basic gmflow model uses a single 1/8 feature, the refinement uses 1/4 feature')
parser.add_argument('--feature_channels', default=128, type=int)
parser.add_argument('--upsample_factor', default=8, type=int)
parser.add_argument('--num_transformer_layers', default=6, type=int)
parser.add_argument('--num_head', default=1, type=int)
parser.add_argument('--attention_type', default='swin', type=str)
parser.add_argument('--ffn_dim_expansion', default=4, type=int)
parser.add_argument('--attn_splits_list', default=[2], type=int, nargs='+',
help='number of splits in attention')
parser.add_argument('--corr_radius_list', default=[-1], type=int, nargs='+',
help='correlation radius for matching, -1 indicates global matching')
parser.add_argument('--prop_radius_list', default=[-1], type=int, nargs='+',
help='self-attention radius for flow propagation, -1 indicates global attention')
# loss
parser.add_argument('--gamma', default=0.9, type=float,
help='loss weight')
# evaluation
parser.add_argument('--eval', action='store_true')
parser.add_argument('--save_eval_to_file', action='store_true')
parser.add_argument('--evaluate_matched_unmatched', action='store_true')
# inference on a directory
parser.add_argument('--inference_dir', default=None, type=str)
parser.add_argument('--inference_size', default=None, type=int, nargs='+',
help='can specify the inference size')
parser.add_argument('--dir_paired_data', action='store_true',
help='Paired data in a dir instead of a sequence')
parser.add_argument('--save_flo_flow', action='store_true')
parser.add_argument('--pred_bidir_flow', action='store_true',
help='predict bidirectional flow')
parser.add_argument('--fwd_bwd_consistency_check', action='store_true',
help='forward backward consistency check with bidirection flow')
# predict on sintel and kitti test set for submission
parser.add_argument('--submission', action='store_true',
help='submission to sintel or kitti test sets')
parser.add_argument('--output_path', default='output', type=str,
help='where to save the prediction results')
parser.add_argument('--save_vis_flow', action='store_true',
help='visualize flow prediction as .png image')
parser.add_argument('--no_save_flo', action='store_true',
help='not save flow as .flo')
# distributed training
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--distributed', action='store_true')
parser.add_argument('--launcher', default='none', type=str, choices=['none', 'pytorch'])
parser.add_argument('--gpu_ids', default=0, type=int, nargs='+')
parser.add_argument('--count_time', action='store_true',
help='measure the inference time on sintel')
return parser
def main(args):
if not args.eval and not args.submission and args.inference_dir is None:
if args.local_rank == 0:
print('pytorch version:', torch.__version__)
print(args)
misc.save_args(args)
misc.check_path(args.checkpoint_dir)
misc.save_command(args.checkpoint_dir)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = True
if args.launcher == 'none':
args.distributed = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
args.distributed = True
# adjust batch size for each gpu
assert args.batch_size % torch.cuda.device_count() == 0
args.batch_size = args.batch_size // torch.cuda.device_count()
dist_params = dict(backend='nccl')
init_dist(args.launcher, **dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
args.gpu_ids = range(world_size)
device = torch.device('cuda:{}'.format(args.local_rank))
setup_for_distributed(args.local_rank == 0)
# model
model = GMFlow(feature_channels=args.feature_channels,
num_scales=args.num_scales,
upsample_factor=args.upsample_factor,
num_head=args.num_head,
attention_type=args.attention_type,
ffn_dim_expansion=args.ffn_dim_expansion,
num_transformer_layers=args.num_transformer_layers,
).to(device)
if not args.eval and not args.submission and not args.inference_dir:
print('Model definition:')
print(model)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model.to(device),
device_ids=[args.local_rank],
output_device=args.local_rank)
model_without_ddp = model.module
else:
if torch.cuda.device_count() > 1:
print('Use %d GPUs' % torch.cuda.device_count())
model = torch.nn.DataParallel(model)
model_without_ddp = model.module
else:
model_without_ddp = model
num_params = sum(p.numel() for p in model.parameters())
print('Number of params:', num_params)
if not args.eval and not args.submission and args.inference_dir is None:
save_name = '%d_parameters' % num_params
open(os.path.join(args.checkpoint_dir, save_name), 'a').close()
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
start_epoch = 0
start_step = 0
# resume checkpoints
if args.resume:
print('Load checkpoint: %s' % args.resume)
loc = 'cuda:{}'.format(args.local_rank)
checkpoint = torch.load(args.resume, map_location=loc)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
model_without_ddp.load_state_dict(weights, strict=args.strict_resume)
if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \
args.no_resume_optimizer:
print('Load optimizer')
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
start_step = checkpoint['step']
print('start_epoch: %d, start_step: %d' % (start_epoch, start_step))
# evaluate
if args.eval:
val_results = {}
if 'chairs' in args.val_dataset:
results_dict = validate_chairs(model_without_ddp,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
val_results.update(results_dict)
if 'things' in args.val_dataset:
results_dict = validate_things(model_without_ddp,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
val_results.update(results_dict)
if 'sintel' in args.val_dataset:
results_dict = validate_sintel(model_without_ddp,
count_time=args.count_time,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
evaluate_matched_unmatched=args.evaluate_matched_unmatched,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
val_results.update(results_dict)
if 'kitti' in args.val_dataset:
results_dict = validate_kitti(model_without_ddp,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
val_results.update(results_dict)
if args.save_eval_to_file:
misc.check_path(args.checkpoint_dir)
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt')
with open(val_file, 'a') as f:
f.write('\neval results after training done\n\n')
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+',
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', 'things_clean_s40+',
'things_final_epe', 'things_final_s0_10', 'things_final_s10_40', 'things_final_s40+',
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', 'sintel_clean_s40+',
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', 'sintel_final_s40+',
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+',
]
eval_metrics = []
for metric in metrics:
if metric in val_results.keys():
eval_metrics.append(metric)
metrics_values = [val_results[metric] for metric in eval_metrics]
num_metrics = len(eval_metrics)
# save as markdown format
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics))
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values))
f.write('\n\n')
return
# Sintel and KITTI submission
if args.submission:
# NOTE: args.val_dataset is a list
if args.val_dataset[0] == 'sintel':
create_sintel_submission(model_without_ddp,
output_path=args.output_path,
padding_factor=args.padding_factor,
save_vis_flow=args.save_vis_flow,
no_save_flo=args.no_save_flo,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
elif args.val_dataset[0] == 'kitti':
create_kitti_submission(model_without_ddp,
output_path=args.output_path,
padding_factor=args.padding_factor,
save_vis_flow=args.save_vis_flow,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
else:
raise ValueError(f'Not supported dataset for submission')
return
# inferece on a dir
if args.inference_dir is not None:
inference_on_dir(model_without_ddp,
inference_dir=args.inference_dir,
output_path=args.output_path,
padding_factor=args.padding_factor,
inference_size=args.inference_size,
paired_data=args.dir_paired_data,
save_flo_flow=args.save_flo_flow,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
pred_bidir_flow=args.pred_bidir_flow,
fwd_bwd_consistency_check=args.fwd_bwd_consistency_check,
)
return
# training datset
train_dataset = build_train_dataset(args)
print('Number of training images:', len(train_dataset))
# Multi-processing
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=torch.cuda.device_count(),
rank=args.local_rank)
else:
train_sampler = None
shuffle = False if args.distributed else True
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=shuffle, num_workers=args.num_workers,
pin_memory=True, drop_last=True,
sampler=train_sampler)
last_epoch = start_step if args.resume and start_step > 0 else -1
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, args.lr,
args.num_steps + 10,
pct_start=0.05,
cycle_momentum=False,
anneal_strategy='cos',
last_epoch=last_epoch,
)
if args.local_rank == 0:
summary_writer = SummaryWriter(args.checkpoint_dir)
logger = Logger(lr_scheduler, summary_writer, args.summary_freq,
start_step=start_step)
total_steps = start_step
epoch = start_epoch
print('Start training')
while total_steps < args.num_steps:
model.train()
# mannual change random seed for shuffling every epoch
if args.distributed:
train_sampler.set_epoch(epoch)
for i, sample in enumerate(train_loader):
img1, img2, flow_gt, valid = [x.to(device) for x in sample]
results_dict = model(img1, img2,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
flow_preds = results_dict['flow_preds']
loss, metrics = flow_loss_func(flow_preds, flow_gt, valid,
gamma=args.gamma,
max_flow=args.max_flow,
)
if isinstance(loss, float):
continue
if torch.isnan(loss):
continue
metrics.update({'total_loss': loss.item()})
# more efficient zero_grad
for param in model_without_ddp.parameters():
param.grad = None
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
lr_scheduler.step()
if args.local_rank == 0:
logger.push(metrics)
logger.add_image_summary(img1, img2, flow_preds, flow_gt)
total_steps += 1
if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps:
if args.local_rank == 0:
checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps)
torch.save({
'model': model_without_ddp.state_dict()
}, checkpoint_path)
if total_steps % args.save_latest_ckpt_freq == 0:
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth')
if args.local_rank == 0:
torch.save({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'step': total_steps,
'epoch': epoch,
}, checkpoint_path)
if total_steps % args.val_freq == 0:
print('Start validation')
val_results = {}
# support validation on multiple datasets
if 'chairs' in args.val_dataset:
results_dict = validate_chairs(model_without_ddp,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
if args.local_rank == 0:
val_results.update(results_dict)
if 'things' in args.val_dataset:
results_dict = validate_things(model_without_ddp,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
if args.local_rank == 0:
val_results.update(results_dict)
if 'sintel' in args.val_dataset:
results_dict = validate_sintel(model_without_ddp,
count_time=args.count_time,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
evaluate_matched_unmatched=args.evaluate_matched_unmatched,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
if args.local_rank == 0:
val_results.update(results_dict)
if 'kitti' in args.val_dataset:
results_dict = validate_kitti(model_without_ddp,
padding_factor=args.padding_factor,
with_speed_metric=args.with_speed_metric,
attn_splits_list=args.attn_splits_list,
corr_radius_list=args.corr_radius_list,
prop_radius_list=args.prop_radius_list,
)
if args.local_rank == 0:
val_results.update(results_dict)
if args.local_rank == 0:
logger.write_dict(val_results)
# Save validation results
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt')
with open(val_file, 'a') as f:
f.write('step: %06d\n' % total_steps)
if args.evaluate_matched_unmatched:
metrics = ['chairs_epe',
'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+',
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40',
'things_clean_s40+',
'sintel_clean_epe', 'sintel_clean_matched', 'sintel_clean_unmatched',
'sintel_clean_s0_10', 'sintel_clean_s10_40',
'sintel_clean_s40+',
'sintel_final_epe', 'sintel_final_matched', 'sintel_final_unmatched',
'sintel_final_s0_10', 'sintel_final_s10_40',
'sintel_final_s40+',
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+',
]
else:
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+',
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40',
'things_clean_s40+',
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40',
'sintel_clean_s40+',
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40',
'sintel_final_s40+',
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+',
]
eval_metrics = []
for metric in metrics:
if metric in val_results.keys():
eval_metrics.append(metric)
metrics_values = [val_results[metric] for metric in eval_metrics]
num_metrics = len(eval_metrics)
# save as markdown format
if args.evaluate_matched_unmatched:
f.write(("| {:>25} " * num_metrics + '\n').format(*eval_metrics))
f.write(("| {:25.3f} " * num_metrics).format(*metrics_values))
else:
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics))
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values))
f.write('\n\n')
model.train()
if total_steps >= args.num_steps:
print('Training done')
return
epoch += 1
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
main(args)
|