File size: 3,389 Bytes
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) OpenMMLab. All rights reserved.
from __future__ import division

import numpy as np

from annotator.uniformer.mmcv.image import rgb2bgr
from annotator.uniformer.mmcv.video import flowread
from .image import imshow


def flowshow(flow, win_name='', wait_time=0):
    """Show optical flow.

    Args:
        flow (ndarray or str): The optical flow to be displayed.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
    """
    flow = flowread(flow)
    flow_img = flow2rgb(flow)
    imshow(rgb2bgr(flow_img), win_name, wait_time)


def flow2rgb(flow, color_wheel=None, unknown_thr=1e6):
    """Convert flow map to RGB image.

    Args:
        flow (ndarray): Array of optical flow.
        color_wheel (ndarray or None): Color wheel used to map flow field to
            RGB colorspace. Default color wheel will be used if not specified.
        unknown_thr (str): Values above this threshold will be marked as
            unknown and thus ignored.

    Returns:
        ndarray: RGB image that can be visualized.
    """
    assert flow.ndim == 3 and flow.shape[-1] == 2
    if color_wheel is None:
        color_wheel = make_color_wheel()
    assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3
    num_bins = color_wheel.shape[0]

    dx = flow[:, :, 0].copy()
    dy = flow[:, :, 1].copy()

    ignore_inds = (
        np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) |
        (np.abs(dy) > unknown_thr))
    dx[ignore_inds] = 0
    dy[ignore_inds] = 0

    rad = np.sqrt(dx**2 + dy**2)
    if np.any(rad > np.finfo(float).eps):
        max_rad = np.max(rad)
        dx /= max_rad
        dy /= max_rad

    rad = np.sqrt(dx**2 + dy**2)
    angle = np.arctan2(-dy, -dx) / np.pi

    bin_real = (angle + 1) / 2 * (num_bins - 1)
    bin_left = np.floor(bin_real).astype(int)
    bin_right = (bin_left + 1) % num_bins
    w = (bin_real - bin_left.astype(np.float32))[..., None]
    flow_img = (1 -
                w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :]
    small_ind = rad <= 1
    flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind])
    flow_img[np.logical_not(small_ind)] *= 0.75

    flow_img[ignore_inds, :] = 0

    return flow_img


def make_color_wheel(bins=None):
    """Build a color wheel.

    Args:
        bins(list or tuple, optional): Specify the number of bins for each
            color range, corresponding to six ranges: red -> yellow,
            yellow -> green, green -> cyan, cyan -> blue, blue -> magenta,
            magenta -> red. [15, 6, 4, 11, 13, 6] is used for default
            (see Middlebury).

    Returns:
        ndarray: Color wheel of shape (total_bins, 3).
    """
    if bins is None:
        bins = [15, 6, 4, 11, 13, 6]
    assert len(bins) == 6

    RY, YG, GC, CB, BM, MR = tuple(bins)

    ry = [1, np.arange(RY) / RY, 0]
    yg = [1 - np.arange(YG) / YG, 1, 0]
    gc = [0, 1, np.arange(GC) / GC]
    cb = [0, 1 - np.arange(CB) / CB, 1]
    bm = [np.arange(BM) / BM, 0, 1]
    mr = [1, 0, 1 - np.arange(MR) / MR]

    num_bins = RY + YG + GC + CB + BM + MR

    color_wheel = np.zeros((3, num_bins), dtype=np.float32)

    col = 0
    for i, color in enumerate([ry, yg, gc, cb, bm, mr]):
        for j in range(3):
            color_wheel[j, col:col + bins[i]] = color[j]
        col += bins[i]

    return color_wheel.T